Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2019

Electronic Supporting Information (ESI)

Optimization of magnetic properties in fast consolidated SrFe₁₂O₁₉ nanocrystallites

Marian Stingaciu,^{a,b} Anna Zink Eikeland,^a Frederik Holm Gjørup,^a Stefano Deledda^b and Mogens Christensen^{*a}

^aCenter for Materials Crystallography, Department of Chemistry and Interdisciplinary Nanoscience Centre (iNANO), Aarhus University, DK-8000 Aarhus C, Denmark

^bDepartment for Neutron Materials Characterization, Institute for Energy Technology, Instituttveien 18, NO-2007 Kjeller, Norway

*E-mail: mch@chem.au.dk

Powder X ray diffraction data after SPS

Fig.1 PXRD patterns obtained on crushed SPS pellets. After sintering the traces of $Sr(NO_3)_2$ and $NaNO_3$ are not detected anymore. The bottom pattern represents the results of the powder with the [Sr:Fe]=[1:4] molar ratio , prior SPS.

The effect of pre-alignment in magnetic field prior SPS

(b) ₃₆ (a) Max: 36.89 0001 32 H-0.55T Oriented volume fraction (%) 28 H-0.55T_t2min 24 20 Min: 0.08 16 H-0.55T [0001] 12 Max: 33.45 8 4 orientation Random 0 -4 0 15 30 45 60 75 90 Min: 0.09 Tilting angle k (°) H-0.55T_t2min

The effect of pre-alignment in 0.55T and sintering for 2 and 5 minutes

Fig.3 (a) The (001) X-ray pole figures of SPS pellets pre-aligned in 0.55 T and sintered for 2 (H-0.55T_t2min) and 5 minutes (H-0.55T) (b) The corresponding oriented volume fractions.

Fig.4 High resolution transmission electron micrograph collected with a FEI TALOS F200A analytical electron microscope equipped with an X-FEG electron source and a Ceta 16M camera. The image shows a zoom on a hexagonal platelet. The yellow area is fast Fourier transformed (FFT) in the upper right insert. The lower right outlines in purple shows a four times magnification allowing to see the atomic resolution. The TEM image testifies to the single crystal nature of the hexagonal platelets.