Heterogeneous Biochars from Agriculture Residues and Coal Fly Ash for the Removal of Heavy Metals from Coking Wastewater

Lihui Gao^{1,2,3*} and Jillian L. Goldfarb^{2,3,4}

- 1. School of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou 221116, People's Republic of China
- 2. Department of Mechanical Engineering, Division of Materials Science and Engineering, Boston University, 110 Cummington Mall, Boston MA 02215 USA
- 3. The Leone Family Department of Energy & Mineral Engineering, The EMS Energy Institute, and The Institutes of Energy and the Environment, The Pennsylvania State University, University Park, PA 16802, United States
- 4. Department of Biological and Environmental Engineering, Cornell University, 226 Riley-Robb Hall, Ithaca NY 14853

Supplemental Information (for online publication only)

Figure S1	Image of coking wastewater prior to biological treatment	S 1
Table S1	Composition of wheat straw samples from across the globe as reported in the literature	S2
Table S2	Representative proximate and ultimate analysis of global bituminous coals	S3
Table S3	Representative heavy metal contents in global samples of coal fly ashes from bituminous coals	S4
Table S4	Results ICP-MS analysis of heavy metals present in coking wastewater before and after biological treatment	S5
Figure S2	XPS wide energy spectrums of biochar and activated carbon	S6
Figure S3	C1s peaks of biochar and activated carbon	S7
Figure S4	Adsorption kinetic data of heavy metals to biochars and activated carbons	S 8
Table S5	Adsorption kinetic data fit to pseudo-first order, pseudo-second order and intraparticle diffusion models (± 1 standard error)	S9
Table S6	Adsorption isotherm data fit to Langmuir, Freundich and Temkin models $(\pm 1 \text{ standard error})$	S10
References		S11

^{*} To whom correspondence should be addressed: lihuigaocumt@163.com

Figure S1. Image of coking wastewater prior to biological treatment

	USA (This Study)	Australia ¹	Mexico ²	Canada ³	China ⁴	China ⁴	India ⁵
Proximate Analysis							
Volatile Matter	86.09 ± 0.79	76.3	68.23	77.04-79.85	63.96 ± 7.29	68.45	83.08
Fixed Carbon	$9.27 \hspace{0.1in} \pm \hspace{0.1in} 0.89$	18.5	14.72	16.76-18.15	14.96 ± 1.49	15.12	10.29
Ash (Inorganic Matter)	4.64 ± 0.11	5.2	17.04	3.09-4.81	12.45 ± 9.02	6.29	6.63
Ultimate Analysis			Ave	rage Wt % (dry ba	asis)		
С	53.94 ± 0.56	46	37.2	44.26 - 46.04	42.11 ± 2.12	50.02	38.34
Н	5.93 ± 0.01	5.92	5.57	4.97 - 5.92	6.53 ± 0.46	5.33	5.47
Ν	$0.70 \hspace{0.1in} \pm \hspace{0.1in} 0.09$	1.42	1.14	0.34 - 1.16	0.58 ± 0.28	0.67	0.60
0	39.32 ± 0.63	41.3	37.3	43.79 - 44.48	40.51 ± 2.67	43.75	55.22
S	0.11 ± 0.01	0.15	0.2	0.08 - 0.13	0.32 ± 0.10	0.23	0.37

|--|

Venezuela (This Study)		Pennsylvania USA ⁶	Pennsylvania USA ⁶ Henan Province, China ⁷						
Proximate Analysis	Average Wt % (dry basis)								
Volatile Matter	36.3	32.18	41.49	37.91	35.98	30.56			
Fixed Carbon	63.63	60.88	39.23	43.63	44.22	49.88			
Ash (Inorganic Matter)	0.07	6.93	18.51	17.30	18.75	15.38			
Ultimate Analysis		A	Average Wt %	% (dry basis)					
С	76.9	76.28	68.95	68.88	67.03	79.31			
Н	5.36	5.33	5.14	5.45	5.34	4.72			
Ν	1.35	1.42	1.11	0.13	1.09	1.03			
0	8.74	7.65	5 50	7 09	674	13.38			
S	0.64	1.73	5.52	7.08	0.74	1.30			
HHV (MJ/kg)	28.85	30.93				25.44			

Table S2. Representative proximate and ultimate analysis of global bituminous coals

Wt % in Fly Ash	Venezuela	ı (T	his Study)	Huaibei, C	China ⁸ *	Poland ^{9*}	Can	ada ^{10*}
Al	12.93	±	3.18	15.25	17.78	8.16	12.01	10.21
Ba	1.65	±	0.08				0.21	0.15
Br	0.42	±	0.07					
Ca	1.38	±	3.01	3.96	3.81	6.19	1.84	2.07
Cr							0.03	0.02
Fe	1.49	±	2.64	4.82	6.22	4.34	2.52	2.98
Κ	1.54	±	3.65	0.64	1.00	1.37	1.92	1.62
Mg	0.46	±	0.77	1.20	0.80	2.84	0.67	0.69
Mn	0.05	±	0.01			0.02	0.03	
Na	4.94	±	7.69	0.52	0.33	1.61	0.37	0.30
Ni							0.01	0.01
Р	0.49	±	0.03	0.23	0.18	0.38	0.20	0.10
S	2.36	±	3.39	1.36	1.49	1.69	0.25	0.24
Si	8.48	±	0.08	24.75	22.14	10.92	26.18	27.03
Sr							0.29	0.03
Ti	12.39	±	10.05	0.80	0.81	0.46	0.55	0.44
V							0.02	0.02
Wt % in Fly				US Finad C	alall			
Ash				U.SFireu Co	Dais			
Al	12.34		14.32	13.87	15.4	4	9.80	
Ba	0.05		0.08	0.12	0.0	8	0.05	
Br								
Ca	1.94		0.88	1.21	0.4	4	1.80	
Cr								
Fe	10.28		9.68	10.16	2.2	5	24.37	
Κ	1.34		1.91	2.00	2.1	9	0.98	
Mg	0.43		0.46	0.47	0.4	8	0.37	
Mn								
Na	0.35		0.13	0.10	0.1	8	0.26	
Ni								
Р	0.21		0.11	0.10	0.0	5	0.06	
S	0.40		0.27	0.23	0.02	2	0.32	
Si	21.76		22.66	23.42	26.8	34	19.23	
Sr								
Ti	0.79		0.95	0.99	1.1	7	0.55	
V								

 Table S3. Representative heavy metal contents in global samples of coal fly ashes from bituminous coals

*Calculated from chemical composition of minerals

	As (ppm)	Cd (ppm)	Co (ppm)	Cr (ppm)	Cu (ppm)
Coking wastewater	0.101 ± 0.414	0.101 ± 0.342	1.049±0.159	0.107±0.247	0.549±0.136
Water after Biological Treatment	0.035±1.287	0.028±0.310	0.107±0.075	0.010±0.251	0.861±0.454
	Mn (ppm)	Ni (ppm)	Pb (ppm)	Se (ppm)*	Zn (ppm)
Coking wastewater	Mn (ppm) 2.482±0.205	Ni (ppm) 0.798±0.136	Pb (ppm) 0.036±0.291	Se (ppm)* 69.422±0.155	Zn (ppm) 1.364±0.243

Table S4. Results ICP-MS analysis of heavy metals present in coking wastewater before and after biological treatment

* Note: high energy He mode not utilized; Se reported only for presence, but given Ar-Ar dimer interference, Se was not selected as model compound in adsorption experiments

Figure S2. XPS wide energy spectrums of biochar and activated carbon

Figure S3. C1s peaks of biochar and activated carbon

Figure S4. Adsorption kinetic data of heavy metals to biochars and activated carbons

Biochar	Motal	Pseudo-first-order kinetic			Pseudo-second-order kinetic			Intraparticle diffusion		
Biochai	Metal	$K_1(1/min)$	$q_{e1}(mg/g)$	\mathbb{R}^2	K ₂ (g/mg min)	q _{e2} (mg/g)	\mathbb{R}^2	$K_i(mg/(g/min^{0.5}))$	D(mg/g)	\mathbb{R}^2
	Mn	3.75E-03	3.845	0.965	4.45E-03	6.802	0.995	1.23E-01	2.852	0.903
Dy WS	Со	2.85E-03	5.683	0.943	2.62E-03	10.030	0.991	1.82E-01	4.017	0.923
ry_ws	Ni	3.16E-03	3.936	0.943	4.03E-03	7.138	0.991	1.28E-01	2.972	0.850
	Zn	2.49E-03	4.819	0.886	2.92E-03	8.246	0.989	1.57E-01	3.046	0.906
	Mn	3.37E-03	3.700	0.967	4.12E-03	5.809	0.992	1.21E-01	1.917	0.901
$\mathbf{D}_{\mathbf{V}}$ WS EA(20.1)	Со	2.90E-03	6.006	0.947	2.42E-03	9.787	0.991	1.95E-01	3.399	0.919
Fy_w5_FA(20.1)	Ni	2.87E-03	3.617	0.888	3.75E-03	6.088	0.990	1.17E-01	2.203	0.840
	Zn	3.23E-03	4.407	0.913	2.93E-03	5.988	0.986	1.46E-01	1.266	0.884
	Mn	3.10E-03	3.639	0.915	4.35E-03	6.321	0.995	1.13E-01	2.445	0.850
	Со	3.55E-03	7.872	0.940	2.02E-03	11.817	0.994	2.67E-01	3.442	0.887
Py_wS_FA(10.1)	Ni	2.54E-03	3.848	0.895	3.95E-03	6.754	0.994	1.22E-01	2.557	0.904
	Zn	4.48E-03	5.642	0.907	2.95E-03	7.254	0.996	1.86E-01	1.434	0.841
	Mn	5.10E-03	7.140	0.914	3.34E-03	10.806	0.999	2.64E-01	3.000	0.771
AC WS	Со	3.15E-03	12.216	0.854	1.55E-03	22.090	0.995	4.31E-01	8.762	0.829
AC_WS	Ni	3.21E-03	8.422	0.948	1.78E-03	13.342	0.991	2.72E-01	4.505	0.905
	Zn	6.03E-03	7.763	0.944	3.12E-03	12.238	0.998	2.63E-01	4.552	0.807
	Mn	5.35E-03	5.827	0.976	3.64E-03	8.332	0.998	2.09E-01	2.258	0.809
AC WS $EA(20.1)$	Co	4.21E-03	11.456	0.976	1.41E-03	15.982	0.998	3.80E-01	4.123	0.893
$AC_WS_PA(20.1)$	Ni	5.77E-03	6.594	0.986	2.40E-03	8.111	0.997	2.28E-01	1.339	0.827
	Zn	4.74E-03	4.717	0.937	3.65E-03	6.627	0.995	1.66E-01	1.641	0.800
	Mn	1.91E-03	4.684	0.943	2.02E-03	7.266	0.974	1.31E-01	2.258	0.949
AC WS EA (10.1)	Со	3.56E-03	10.387	0.972	1.34E-03	15.423	0.992	3.35E-01	4.560	0.883
$AC_WS_FA(10.1)$	Ni	3.55E-03	4.830	0.972	3.56E-03	7.628	0.995	1.55E-01	2.619	0.902
	Zn	3.63E-03	4.372	0.904	4.10E-03	6.565	0.995	1.37E-01	2.078	0.885

 Table S3. Adsorption kinetic data fit to pseudo-first order, pseudo-second order and intraparticle diffusion models (± 1 standard error)

		Langmuir		Freund	Freundlich			Temkin		
Biochar	Metals	K_L (L/mg)	$Q_m (mg/g)$	\mathbb{R}^2	K_{f} (mg ¹⁻ⁿ L ⁿ /g)	n	R ²	K _T (L/mol)	B(J/mol)	R ²
Py WS	Mn	1.70E-02	6.316	0.997	1.128	3.949	0.952	4.13E-01	1.026	0.989
	Co	2.20E-03	37.405	0.998	0.456	1.724	0.983	2.65E-02	7.682	0.977
1 y_ws	Ni	9.10E-03	13.000	0.994	0.836	2.473	0.989	1.11E-01	2.571	0.978
	Zn	4.14E-03	14.951	0.998	0.213	1.607	0.993	5.24E-02	3.039	0.957
	Mn	7.53E-03	9.058	0.997	0.353	2.032	0.961	8.15E-02	1.913	0.988
	Co	2.12E-03	32.741	0.997	0.367	1.672	0.982	2.63E-02	6.614	0.981
Py_WS_FA(20:1)	Ni	8.33E-03	11.336	0.995	0.366	1.828	0.970	8.33E-02	2.494	0.986
	Zn	3.72E-03	17.714	0.999	0.197	1.495	0.987	5.05E-02	3.434	0.975
	Mn	5.20E-03	10.752	0.992	0.260	1.817	0.977	6.15E-02	2.189	0.976
	Co	1.95E-03	32.650	0.997	0.316	1.626	0.980	2.50E-02	6.487	0.981
Py_WS_FA(10:1)	Ni	1.03E-02	9.151	0.996	0.385	1.951	0.954	9.69E-02	2.055	0.987
	Zn	3.80E-03	13.418	0.996	0.165	1.541	0.977	4.93E-02	2.671	0.979
	Mn	2.65E-03	21.686	0.992	0.168	1.436	0.816	4.23E-02	3.865	0.853
	Co	1.34E-03	45.410	0.999	0.215	1.431	0.986	2.06E-02	8.283	0.977
AC_WS	Ni	4.30E-03	18.646	0.999	0.221	1.471	0.969	5.69E-02	3.613	0.996
	Zn	1.75E-03	34.078	0.993	0.120	1.255	0.977	3.89E-02	4.914	0.986
	Mn	4.27E-03	16.086	0.995	0.271	1.664	0.966	5.44E-02	3.198	0.957
	Co	1.03E-03	60.155	0.994	0.289	1.484	0.978	1.22E-02	12.033	0.994
AC_WS_FA(20:1)	Ni	4.63E-03	16.858	0.993	0.287	1.640	0.990	5.75E-02	3.395	0.983
	Zn	1.12E-03	41.156	0.991	0.097	1.228	0.993	2.16E-02	5.880	0.981
	Mn	4.24E-03	13.446	0.996	0.222	1.656	0.982	5.34E-02	2.690	0.979
	Co	1.08E-03	54.453	0.991	0.191	1.377	0.992	1.90E-02	9.176	0.946
AC_WS_FA(10:1)	Ni	3.78E-03	18.804	0.994	0.210	1.493	0.986	5.04E-02	3.683	0.973
	Zn	1.27E-03	43.458	0.995	0.102	1.210	0.997	3.44E-02	5.517	0.918

Table S4. Adsorption isotherm data fit to Langmuir, Freundich and Temkin models (± 1 standard error)

References

- Mulligan, C. J.; Strezov, L.; Strezov, V. Thermal Decomposition of Wheat Straw and Mallee Residue under Pyrolysis Conditions. In *Energy and Fuels*; 2010; Vol. 24, pp 46– 52. https://doi.org/10.1021/ef9004797.
- (2) Montero, G.; Coronado, M. A.; Torres, R.; Jaramillo, B. E.; García, C.; Stoytcheva, M.; Vázquez, A. M.; León, J. A.; Lambert, A. A.; Valenzuela, E. Higher Heating Value Determination of Wheat Straw from Baja California, Mexico. *Energy* 2016, *109*, 612–619. https://doi.org/10.1016/j.energy.2016.05.011.
- (3) Ghaly, A. E.; Al-Taweel, A. Physical and Thermochemical Properties of Cereal Straws. *Energy Sources* **1990**, *12* (2), 131–145. https://doi.org/10.1080/00908319008960195.
- (4) Cuiping, L.; Chuangzhi, W.; Yanyongjie; Haitao, H. Chemical Elemental Characteristics of Biomass Fuels in China. *Biomass and Bioenergy* **2004**, *27* (2), 119–130. https://doi.org/10.1016/j.biombioe.2004.01.002.
- (5) Biswas, B.; Pandey, N.; Bisht, Y.; Singh, R.; Kumar, J.; Bhaskar, T. Pyrolysis of Agricultural Biomass Residues: Comparative Study of Corn Cob, Wheat Straw, Rice Straw and Rice Husk. *Bioresour. Technol.* 2017, 237, 57–63. https://doi.org/10.1016/j.biortech.2017.02.046.
- (6) Goldfarb, J. L.; Ceylan, S. Second-Generation Sustainability: Application of the Distributed Activation Energy Model to the Pyrolysis of Locally Sourced Biomass-Coal Blends for Use in Co-Firing Scenarios. *Fuel* 2015, *160*, 297–308. https://doi.org/10.1016/j.fuel.2015.07.071.
- (7) Yu, Y.; Xu, M.; Yao, H.; Yu, D.; Qiao, Y.; Sui, J.; Liu, X.; Cao, Q. Char Characteristics and Particulate Matter Formation during Chinese Bituminous Coal Combustion. *Proc. Combust. Inst.* 2007, *31 II* (2), 1947–1954. https://doi.org/10.1016/j.proci.2006.07.116.
- (8) Liu, G.; Vassilev, S. V.; Gao, L.; Zheng, L.; Peng, Z. Mineral and Chemical Composition and Some Trace Element Contents in Coals and Coal Ashes from Huaibei Coal Field, China. *Energy Convers. Manag.* 2005, 46 (13–14), 2001–2009. https://doi.org/10.1016/j.enconman.2004.11.002.
- (9) Koukouzas, N.; Hämäläinen, J.; Papanikolaou, D.; Tourunen, A.; Jäntti, T. Mineralogical and Elemental Composition of Fly Ash from Pilot Scale Fluidised Bed Combustion of Lignite, Bituminous Coal, Wood Chips and Their Blends. *Fuel* 2007, *86* (14 SPEC. ISS.), 2186–2193. https://doi.org/10.1016/j.fuel.2007.03.036.
- (10) Goodarzi, F. Characteristics and Composition of Fly Ash from Canadian Coal-Fired Power Plants. *Fuel* **2006**, *85* (10–11), 1418–1427. https://doi.org/10.1016/j.fuel.2005.11.022.
- (11) Kutchko, B. G.; Kim, A. G. Fly Ash Characterization by SEM-EDS. *Fuel* **2006**, *85* (17–18), 2537–2544. https://doi.org/10.1016/j.fuel.2006.05.016.