Design strategies for development of Pd-based acetylene hydrochlorination catalyst: Improvement of catalyst stability by nitrogen-containing ligands

Haihua He,^{a,b} Jia Zhao,^{*a} Bolin Wang,^a Yuxue Yue,^a Gangfeng Sheng,^a Qingtao Wang,^a Lu Yu,^a Zhong-ting Hu ^c and Xiaonian Li ^{*a}

- a. Industrial Catalysis Institute, Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Zhejiang University of Technology, Hangzhou 310014, China.
- b. Pharmaceutical and Material Engineering School, Jin Hua Polytechnic, Jinhua 321007, China.
- c. College of Environment, Zhejiang University of Technology, Hangzhou 310014, China.
- * Correspondence: jiazhao@zjut.edu.cn (Jia zhao); xnli@zjut.edu.cn (Xiaonian Li); Tel.: +86 571 88320002.

Table of contents:

Table S1. The comparisons of catalytic performance between $(NH_4)_2PdCl_4/AC$ andvarious Pd-based catalysts reported in literatures.

Table S2. Fitting parameters of H₂-TPR profiles.

Figure S1. Procedure for the TPR area peaks determination: (a) details of the TPR profiles of the PdCl₂/AC catalyst (Pd²⁺ reduction) (b) the Pd²⁺ reduction peak was subject to baseline correction (c) a cumulative area counts in the interval 120 to 300 °C was carried out.

Catalysts	Pd loading	Reaction conditions (Temperature,GHSV,	Site Time Yield (STY)	Reference
PdCl ₂ -KCl-LaCl ₃ /C	0.9%	^v _{HCl} . v _{C2H2}) 180°C,120 h ⁻¹ ,1.15	(kg_{VCM}/kg_{Metal})	[1]
Pd/NH ₄ F-HY	0.90%	160°C, 110 h ⁻¹ , 1.25	42	[2]
Pd-K/NFY	0.90%	160°C, 110 h ⁻¹ , 1.25	41	[3]
Pd/PANI-HY	0.90%	160°C, 110 h ⁻¹ , 1.25	40	[4]
PdCl ₂ /C	0.64%	180°C, 1080 h ⁻¹ , 1.1	55	[5]
Pd/HY	0.5%	160°C,110 h ⁻¹ ,1.25	61	[6]
Pd-K/HY	0.5%	160°C, 110 h ⁻¹ , 1.25	61	[7]
(NH ₄) ₂ PdCl ₄ /AC	0.5%	100°C, 100 h ⁻¹ , 1.2	58	This work
(NH ₄) ₂ PdCl ₄ /AC	0.5%	160°C, 370 h ⁻¹ , 1.2	137	This work

Table S1. The comparisons of catalytic performance between $(NH_4)_2PdCl_4/AC$ and various Pd-based catalysts reported in literatures.

^a STY $(kg_{VCM}/kg_{Metal} \cdot h)$ was calculated as the average conversion of acetylene when the reaction reached steady state.

Sample	T peak (°C)	Area (H ₂)	H ₂ consumed	Pd ²⁺ species (%)
PdCl ₂ /AC	218	312ª	28.3 ^b	76.3
(NH ₄) ₂ PdCl ₄ /AC	235	328	29.7	80.2

Table S2. Fitting parameters of H2-TPR profiles.

^a The areas of the hydrogen consumption peak. ^b The amount of H_2 consumed in µmol/g.

Figure S1. Procedure for the TPR area peaks determination: (a) details of the TPR profiles of the $PdCl_2/AC$ catalyst (Pd^{2+} reduction) (b) the Pd^{2+} reduction peak was subject to baseline correction (c) a cumulative area counts in the interval 120 to 300 °C was carried out.

References

- [1] Q. Song, S. Wang, B. Shen, J. Zhao, Petrol. Sci. Technol., 2010, 28, 1825-1833.
- [2] L. Wang, F. Wang, J. Wang, Catal. Commun., 2015, 65, 41-45.
- [3] L. Wang, F. Wang, J. Wang, Catal. Commun., 2016, 83, 9-13.
- [4] L. Wang, F. Wang, J. Wang, Catal. Commun., 2016, 74, 55-59.
- [5] B. Nkosi, N. J. Coville, G. J. Hutchings, Appl. Catal., 1988, 43, 33-39.
- [6] L. Wang, F. Wang, J. Wang, X. Tang, Y. Zhao, D. Yang, F. Jia, T. Hao, React.
- Kine., Mech. Catal., 2013, 110, 187-194.
- [7] F. Wang, L. Wang, J. Wang, Y. Zhao, Y. Wang,; D. Yang, React. Kine., Mech.
- Catal., 2014, 114, 725-734.