## Supplementary Information

An Investigation of  $Li_2TiO_3$ -coke Composite Anode Material for Li-ion Batteries Youlin Liu, Wensheng Li, Xiaoping Zhou\*

## Section1

The Laser Raman characterization shows that the preheated oil coke has 2 bands the D band at 1360 cm<sup>-1</sup> and the G band at 1580 cm<sup>-1</sup>. The ratio of the D band intensity ( $I_D$ ) to the G band intensity ( $I_G$ ) is 0.91 ( $I_D/I_G = 0.91$ ), which indicate that the preheated oil coke is amorphous. The shift of the Raman band at 1580cm–1 to 1562cm–1 (graphite), associated with the degree of graphitization, corresponds to a deviation from a perfect graphite crystal plane (Fig. 1). [*Min Gyu Choia,b, Young-Gi Leea, Seung-Wan Songb, Kwang Man Kim ; Anode properties of titanium oxide nanotube and graphite composites for lithium-ion batteries, Journal of Power Sources 195 (2010) 8289–8296; T.C. Chieu, M.S. Dresselhaus, M. Endo, Phys. Rev. B 26 (1982) 5867 ; M. Endo, C. Kim, T. Karaki, Y. Nishimura, M.J. Mattews, S.D.M. Brown, M.S. Dresselhaus, Carbon 37 (1999) 561*]. The TEM images also show that the preheated coke is not graphitized (Fig. 2 and Fig. 3).



Fig. s1. The Raman spectrum of preheated coke



Fig. s2. TEM image of preheated coke



Fig. s3. HRTEM image of preheated coke.

Section 2 The percentage of  $Li_2TiO_3$  in LTOC

LTOC (0.9998 g) was calcined at 800  $^\circ C$  in air for 4 h. After calcination, 0.3557 g of

white powder  $\rm Li_2TiO_3$  was obtained. The percentage of  $\rm Li_2TiO_3$  in LTOC is 35.6wt%. Section 3

The EDS analysis indicates that the LTOC contains Al, Si, and S impurities, but not contains N.

| Table s1. Impurities in LTOC |            |       |  |  |  |
|------------------------------|------------|-------|--|--|--|
| Element                      | Wt%        | At%   |  |  |  |
| СК                           | 55.6       | 67.92 |  |  |  |
| ОК                           | 29.83      | 27.36 |  |  |  |
| AIK                          | 0.35       | 0.19  |  |  |  |
| SiK                          | 0.26       | 0.14  |  |  |  |
| SK                           | 0.81       | 0.37  |  |  |  |
| TiK                          | 13.15      | 4.03  |  |  |  |
| VK                           | 0          | 0     |  |  |  |
| Matrix                       | Correction | ZAF   |  |  |  |

Section 4



Fig. s4. EDS mapping and the EDS pattern of LTOC

Section 5





Fig. s5. The CV curves of  $Li_2TiO_3$  (a), coke (b), and LTOC (c) at a scan rate of 0.1 mV.s<sup>-1</sup>, within a voltage window between 0.01 and 2.00 V.

From the CV data of coke,  $Li_2TiO_3$ , and LTOC (Fig. S2), the lithium ion diffusion coefficient could be calculated through the Randles-Sevcik equation:  $I_p = (2.69 \times 10^5) n^{3/2} A D_{Li^+} V^{1/2} C_{Li^+} V^{1/2}$  (1)

In equation (1), A is the electrode area (cm<sup>2</sup>), n is the number of electrons transferred,  $C_{Li+}$  is the concentration of Li ion (mol cm<sup>-3</sup>),  $D_{Li+}$  is the lithium diffusion coefficient (cm<sup>2</sup>.s<sup>-1</sup>), and V is the scan rate (V.s<sup>-1</sup>). In our calculation, the area of the electrode is 1.54 cm<sup>2</sup>, the concentration of the Li ion is  $3.1 \times 10^{-2}$  mol.cm<sup>-3</sup>, and the value of n is 1.

Section 6

Table S2. The impedance data of coke, Li<sub>2</sub>TiO<sub>3</sub>, and LTOC electrodes

|                                  | Re (Ω) | Rs (Ω) | Rct (Ω) |  |
|----------------------------------|--------|--------|---------|--|
| coke                             | 2.29   | 34.30  | 59.64   |  |
| Li <sub>2</sub> TiO <sub>3</sub> | 1.94   | 27.72  | 81660   |  |

| LTOC-3 | 2.01 | 28.96 | 24440 |
|--------|------|-------|-------|
|        |      |       |       |

## Section 7

From Fig. s6, the cell  $LiNi_{0.6}Co_{0.2}Mn_{0.2}O_2$ ) cathode -LTOC anode has the same cathode and anode weights with the cell  $LiNi_{0.6}Co_{0.2}Mn_{0.2}O_2$ ) cathode--  $Li_4Ti_5O_{12}$  anode, respectively. Both cells have excess amount of cathode material. However, the cell  $LiNi_{0.6}Co_{0.2}Mn_{0.2}O_2$ ) cathode -LTOC anode could store much more energy (the integration of the charge/discharge curves) than that of the cell  $LiNi_{0.6}Co_{0.2}Mn_{0.2}O_2$ ) cathode--  $Li_4Ti_5O_{12}$  anode.



Fig. s6. The full cells: 1)  $LiNi_{0.6}Co_{0.2}Mn_{0.2}O_2$ ) cathode with LTOC anode (charge/discharged between 2.5-4.2 V, at 100mA/g calculated according to the weight of LTOC); 2)  $LiNi_{0.6}Co_{0.2}Mn_{0.2}O_2$ ) cathode with  $Li_4Ti_5O_{12}$  anode (charge/discharged between 1.7-2.8 V, at 100mA/g calculated according to the weight of  $Li_4Ti_5O_{12}$ ).

## Section 8



Fig. s7. The discharge/charge rate cycling test of LTOC at different current densities.