Supplementary Information

Highly uniform monolayer graphene synthesis via facile pretreatment of copper catalyst substrates using an ammonium persulfate solution

Hyunhak Jeong,^{‡ab} Wang-Taek Hwang,^{‡a} Younggul Song,^a Jae-Keun Kim,^a Youngrok Kim,^a Joshua Hihath,^b Seungjun Chung^{*c} and Takhee Lee^{*a}

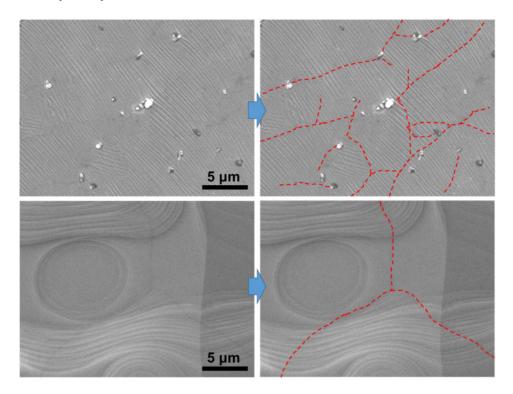
^a. Department of Physics and Astronomy, and Institute of Applied Physics, Seoul National University, Seoul 08826, South Korea.

^b. Electrical and Computer Engineering, University of California, Davis, CA 95616, USA

^c. Photo-Electronic Hybrids Research Center, Korea Institute of Science and Technology (KIST), Seoul 02792, South Korea.

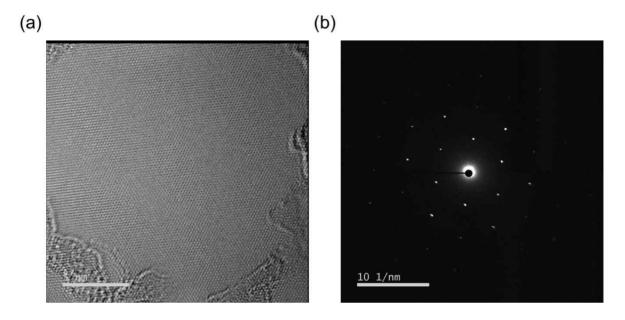
[‡] These authors contributed equally to this work.

E-mail: tlee@snu.ac.kr, seungjun@kist.re.kr


Comparison of other copper surface engineering approaches

Method	Description	Advantage	Disadvantage	Ref
Surface	• Electrochemically etch	• Produce highly flat	• Complicated.	S 1
planarization (Electropolishing)	the copper surface by using it as the anode in	copper surface morphology.	• May be non-uniform producing etch pits.	
	the electrolyte in a three- electrode electrochemical cell.			
Surface	• Anneal the Cu samples	• Produce relatively flat	• Usually should be	S2,
planarization	under sufficient	copper surface	assisted with other	S3
(Annealing)	hydrogen flow for	morphology.	surface engineering	
	several minutes to hours	• Reduce native oxide in	method to acquire the	
	before flowing carbon	the copper catalyst	high quality graphene.	
	precursor like methane.	which reduces excessive	• Could be irregular	
		carbon sublimation.	depending on air flow	
			dynamics in the vacuum	
			chamber.	
			• Inapplicable in case of	
			low temperature CVD	
			process.	
Surface	• Use melamine as	• Large-sized (~1 cm)	• Could be irregular	S4
passivation	passivating agent to	single crystal graphene.	depending on air flow	
(Melamine)	suppress the active sites	• High quality.	dynamics in the vacuum	
	on copper surface.		chamber.	
			• Because use of the	
			powder form, may be	
			inhaled which is highly	
			toxic.	
			• Inapplicable in case of	
			low temperature CVD	
			process.	
Chemical	• Use nitric acid to etch the	• Simple.	• Toxic and dangerous	S5
treatment	copper surface for aiding	• Remove the most of	etchant.	
(Nitric acid)	in removing the native	heavy metal particles	Harmful gas byproduct	
	oxide on as-received Cu	which induce excessive	(NO ₂)	
	foils in addition to any	nucleation.	• May non-uniform	
	possible surface		depending on the	
	contaminants.		solution-copper contact	
			condition.	

 Table S1 Comparison of other copper surface engineering approaches


Chemical	• Use acetic acid to etch	• Simple.	• Relatively toxic etchant.	S1,
treatment	the copper surface for		• The quality of the grown	S6
(Acetic acid)	aiding in removing the		graphene is usually not	
	native oxide on as-		good.	
	received Cu foils in			
	addition to any possible			
	surface contaminants.			
Chemical and	• Use ammonium	• Simple.	• Relatively toxic etchant.	This
mechanical	persulfate solution to	• Uniform surface		work
<u>treatment</u>	etch the copper surface	treatment due to		
(Ammonium	for aiding in removing	mechanical etching.		
<u>persulfate)</u>	the native oxide on as-	● No harmful gas		
	received Cu foils in	byproduct.		
	addition to any possible	• Produce good quality		
	surface contaminants	of graphene even with		
	while applying	rough surface		
	ultrasonication for	morphology of the		
	uniform etch profile.	copper surface.		

Wrinkle density analysis

Fig. S1 Upper images: SEM images of the pristine copper surface after graphene growth. Right image shows corresponding wrinkles indicated as red dotted lines. Lower images: SEM images of the cleaned copper surface after graphene growth. Right image shows corresponding wrinkles indicated as red dotted lines. The graphene on the cleaned copper surface exhibits less wrinkle density than that of the pristine one.

High Resolution Transmission Electron Microscopy (HRTEM) characterization of clean graphene

Fig. S2 (a) HRTEM image of clean graphene. (b) Selected Area Electron Diffraction (SAED) image of the clean graphene.

To obtain the HRTEM images, clean graphene were transferred onto Quantifoil TEM grids with 2 µm holes by standard transfer procedures. The accelerating voltage was 60 kV. Fig. S2 (a) shows the bright field HRTEM image of clean graphene. The image supports that the high crystalline structure (i.e. hexagonal honeycomb structure) of the clean graphene. Fig. S2 (b) shows Selected Area Electron Diffraction (SAED) image of the clean graphene, which shows only six-fold nearest reflection spots indicating that the clean graphene is monolayer graphene.

References

- S1 T. J. Gnanaprakasa, Y. X. Gu, S. K. Eddy, Z. X. Han, W. J. Beck, K. Muralidharan and S. Raghavan, *Microelectron. Eng.*, 2015, **131**, 1-7.
- S2 Y. Jin, B. S. Hu, Z. D. Wei, Z. T. Luo, D. P. Wei, Y. Xi, Y. Zhang and Y. L. Liu, J. Mater. Chem. A, 2014, 2, 16208-16216.
- S3 A. Ibrahim, S. Akhtar, M. Atieh, R. Karnik and T. Laoui, Carbon, 2015, 94, 369-377.
- S4 L. Lin, J. Li, H. Ren, A. L. Koh, N. Kang, H. Peng, H. Q. Xu, Z. Liu, ACS Nano, 2016, 10, 2922-2929.
- S5 S. M. Kim, A. Hsu, Y. H. Lee, M. Dresselhaus, T. Palacios, K. K. Kim and J. Kong, *Nanotechnology*, 2013, **24**, 365602.
- S6 K. L. Chavez and D. W. Hess, J. Electrochem. Soc., 2001, 148, G640-G643.