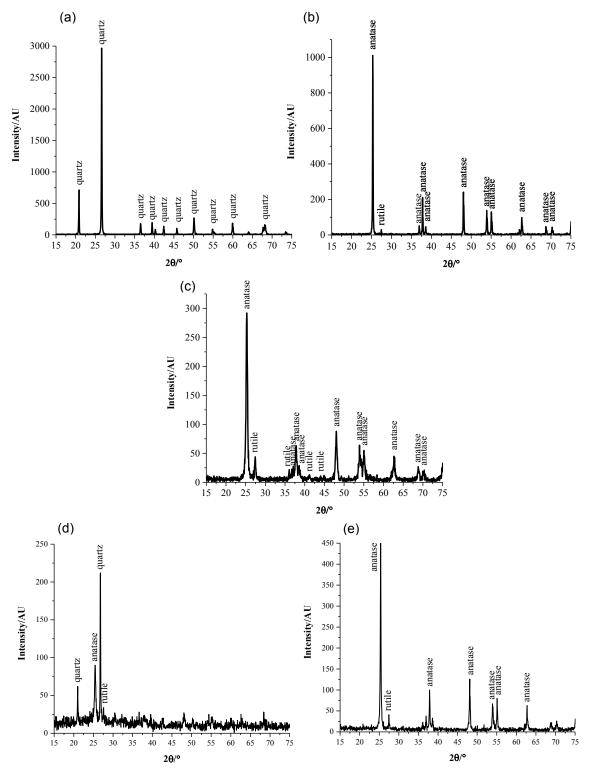
Supporting Information

Dual-scale TiO₂ and SiO₂ particles in combination with a fluoroalkylsilane and polydimethylsiloxane superhydrophobic/superoleophilic coating for efficient solvent-water separation.


Frances L. Heale¹, Maud Einhorn¹, Kristopher Page,¹ Ivan P. Parkin¹ and Claire J. Carmalt^{1*}

¹Department of Chemistry, University College London, 20 Gordon Street, London, WC1H 0AJ.

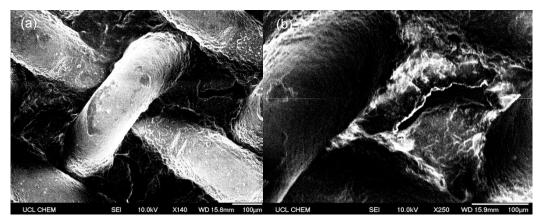

*Corresponding Author at: Department of Chemistry, University College London, 20 Gordon Street, London, WC1H 0AJ. United Kingdom. Tel: +44 20 7679 7528. E-mail address: c.j.carmalt@ucl.ac.uk (C. J. Carmalt).

Table S1.Comprehensive list of various oil-water separation coatings comprising dual-scalesurface roughening particles and surface energy lowering polymer mixtures. Hydrophobic-SiO₂ (H-SiO₂)particles were generated by functionalising the as received SiO₂ mineral (5.00 g) in a 1H,1H,2H,2H-perfluorooctyltriethoxysilane (FAS) (1.00g)/ethanol (99.00 g) mixture.

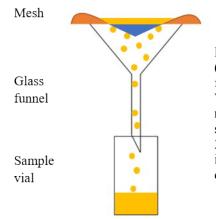

Particle Loading/g				Mixture of Polymer Stock Solutions/g		
TiO ₂		H-SiO ₂				
21	60-200	0.5-1.0	5-15			Sylgard® 184:FAS
nm	nm	μm	μm	Sylgard® 184	FAS	ratio
1.50	1.50	-	-	30.00	-	1:0
1.50	1.50	-	-	-	30.00	0:1
1.50	1.50	-	-	15.00	15.00	1:1
1.50	1.50	-	-	6.00	24.00	1:4
1.50	1.50	-	-	3.00	27.00	1:9
0.60	-	-	0.60	30.00	0.00	1:0
0.60	-	-	0.60	0.00	30.00	0:1
0.60	-	-	0.60	15.00	15.00	1:1
0.60	-	-	0.60	6.00	24.00	1:4
0.60	-	-	0.60	3.00	27.00	1:9
-	-	0.60	0.60	30.00	-	1:0
-	-	0.60	0.60	-	30.00	0:1
-	-	0.60	0.60	15.00	15.00	1:1
-	-	0.60	0.60	6.00	24.00	1:4
-	-	0.60	0.60	3.00	27.00	1:9

Figure S1. X-ray diffraction (XRD) patterns of (a) $SiO_2 5-15 \mu m$ particles, (b) $TiO_2 60-200 nm$ particles, (c) $TiO_2 21 nm$ particles, (d) coating D consisting of $SiO_2 5-15 \mu m$ particles (0.6 g) and $TiO_2 21 nm$ particles (0.6 g) in a 1:9 polymer mixture of Sylgard® 184 and FAS and (e) coating F comprising $TiO_2 60-200 nm$ particles (1.5 g) and $TiO_2 21 nm$ particles (1.5 g) in a 1:1 mixture of Sylgard® 184 and 1H,1H,2H,2H-perfluorooctyltriethoxysilane (FAS).

Figure S2. Scanning electron microscope (SEM) images of copper 60 mesh substrates coated with 60-200 nm and 21 nm particles TiO_2 particles (totalling 3.0 g in equal parts) in (a) 1:1 polymer mixture of Sylgard® 184:FAS (30.0 g) and (b) 1:0 polymer mixture of Sylgard® 184:FAS (30.0 g). Pores are obstructed in both images but the coating is visibly thicker in (b).

Figure S3. Schematic of solvent (yellow) permeating through holes in the functional solvent-water separation device. Water (blue) was unable to flow through mesh pores and therefore collected on the surface. The mass of solvent collected after 30 s of separation provided relevant information for the calculation of a comparable separation efficiency percentage.

Table S2. Toluene, hexane and dichloromethane-water separation efficiencies on functionalised 60 and 100 mesh copper substrates. Coating **D** consists of H-SiO₂ 5-15 μ m particles (0.6 g) with TiO₂ 21 nm particles (0.6 g) in a 1:9 mixture of Sylgard® 184 to FAS. Coating **E** comprises of H-SiO₂ 5-15 μ m particles (0.6 g) with TiO₂ 21 nm particles (0.6 g) in a 0:1 mixture of Sylgard® 184 to FAS. Coating **F** consists of TiO₂ 60-200 nm particles (1.5 g) and TiO₂ 21 nm particles (1.5 g) in a 1:4 mixture of Sylgard® 184 and FAS. Coating **G** contains H-SiO₂ 5-15 μ m particles (0.6 g) with TiO₂ 21 nm particles (0.6 g) in a 1:4 mixture of Sylgard® 184 and FAS. Coating **G** contains H-SiO₂ 5-15 μ m particles (0.6 g) with TiO₂ 21 nm particles (0.6 g) in a 1:4 mixture of Sylgard® 184 to FAS.Hydrophobic-SiO₂ (H-SiO₂) particles were generated by functionalising the as received SiO₂ mineral (5.00 g) in a 1H,1H,2H,2H-perfluorooctyltriethoxysilane (FAS) (1.00g)/ethanol (99.00 g) mixture.

	Mesh	Mixture	Percentage in Used for Sol Efficiency Te	Solvent Separation Efficiency/%		
Coating Label	Pore Size	Toluene- water	Hexane- water	Dichloromethane- water	Average	Error
D	60	50	-	-	100	0
Е	60	50	-	-	94	2
F	60	50	-	-	100	0
G	60	50	-	-	95	2
D	60	-	50	-	77	3
E	60	-	50	-	79	1
F	60	-	50	_	85	1
G	60	-	50	-	87	0
D	60	-	-	50	96	1
E	60	-	-	50	59	1
F	60	-	-	50	97	1
G	60	-	-	50	60	1
D	100	50	-	-	93	4
E	100	50	-	-	99	1
F	100	50	-	-	89	3
G	100	50	-	-	96	1
D	100	-	50	-	86	3
E	100	-	50	-	88	5
F	100	-	50	-	78	2
G	100	-	50	-	85	2