Supplementary Information

The influence of three acid modifications on the physicochemical characteristics of tea-waste biochar pyrolyzed at different temperatures: a comparative study

Chathuri Peiris^{1,2}, Oshani Nayanathara¹, Chanaka M. Navarathna³, Yohan Jayawardhana⁴, Samadhi Nawalage¹, Griffin Burk³, Akila G. Karunanayake⁵, Sunith B. Madduri⁶, Meththika Vithanage⁷, M. N. Kaumal², Todd E. Mlsna³, El Barbary Hassan⁶, Sachith Abeysundara⁸, Felio Ferez⁹ and Sameera R. Gunatilake^{1*}

¹College of Chemical Sciences, Institute of Chemistry Ceylon, Rajagiriya, CO 10107, Sri Lanka

²Department of Chemistry, University of Colombo, CO 00300, Sri Lanka

³Department of Chemistry, Mississippi State University, MS 39762, USA

⁴National Institute of Fundamental Studies, Hantana, KY 20022, Sri Lanka

⁵Biochar Supreme LLC, Everson, WA 98247, USA

⁶Department of Sustainable Bioproducts, Mississippi State University, Mississippi State, MS 39762, USA

⁷Ecosphere Resilience Research Center, Faculty of Applied Sciences, University of Sri Jayewardenepura,

Nugegoda, CO 10250, Sri Lanka

⁸Department of Statistics and Computer Science, University of Peradeniya, Peradeniya, KY 20400, Sri Lanka

⁹Material Science Lab, Integrated Microscopy Center, University of Memphis, Memphis, TN 38152, USA

Biochar Type	Surface Area (m ² /g)	Pore Volume (cm ³ /g)	Diameter (Å)		
BC300	0.2038	0.000088	17.1877		
BC500	0.5755	0.000200	13.8684		
BC700	8.1053	0.002259	11.1459		
NM300	0.2265	0.000069	12.1496		
NM500	0.3362	0.000074	8.8366		
NM700	216.3321	0.070649	13.0631		
SM300	0.2032	0.000090	7.6925		
SM500	0.1317	0.000025	7.5536		
SM700	59.6797	0.017993	12.0599		
HM300	0.0166	0.000180	11.5823		
HM500	0.2138	0.000068	12.7930		
HM700	110.7571	0.033150	12.0317		

Table S1: Surface area, Pore volume and diameter of tea waste Biochar (TWBC)

Figure S2: Low Resolution survey XPS Spectra for (A) Raw BC, (B) NMBC, (C) SMBC and (D)HMBC

		BC300			BC500			BC700		
		BE(eV)	FWHM(eV)	Atomic	BE(eV)	FWHM(eV)	Atomic	BE(eV)	FWHM(eV)	Atomic
				%			%			%
O1s	-NO ₂ , -O-NO ₂	535.1	1.47	1.02	533.99	1.4	2.3	533.7	1.5	3.24
	O=C-OH(R)	533.72	1.5	3.3	532.88	1.5	3.91	533	0.92	1.12
	CO32-	532.8	1.35	4.12	531.92	1.17	5.24	531.99	1.43	6.59
	-O-C-	531.74	1.34	4.28	531.16	1.17	6.83	531.03	1.26	7.84
	O=C-	530.75	1.45	3.37	530.26	1.06	1.46	530.33	1.44	4.6
C1s	O=C-OH(R),	288.58	1.48	3.89	288.53	1.48	6.05	289.21	1.43	1.88
	CO3-	205.20	1.5		207.62	1.01	2.04	205.00	1.5	
	C=O	287.28	1.5	5.11	287.63	1.21	2.04	287.89	1.5	5.73
	-O-C and -C-N	285.91	1.5	16.93	286.12	1.5	8.31	286.13	1.5	8.62
	Aromatic C=C	284.92	1.31	17.45	284.78	1.25	23.31	284.81	1.33	21.55
	С-С, С-Н	284.28	1.35	37.67	284.46	1.21	37.32	284.4	1.11	35.71
N1s	-NO ₂ , -O-NO ₂	404.08	0.49	0.04	405.71	2.45	0.33	406.26	1.24	0.18
	Quaternary-N	401.54	2	0.25	402.48	1.8	0.35	403.51	1.72	0.22
	Pyrrolic-N	400.29	1.84	1.61	400.51	1.78	1.08	400.81	2.15	0.86
	Pyridonic-N	399.37	1.94	0.83	399.91	1.31	0.43	399.85	1.41	0.87
	Pyridinic-N	397.96	0.5	0.12	398.62	1.35	1.04	398.3	1.59	1

Table S3: High resolution XPS data for BC300, BC500 and BC700

Table S4: High resolution XPS data for NM300, NM500 and NM700

		NM300				NM500		NM700		
		BE(eV)	FWHM(eV)	Atomic	BE(eV)	FWHM(eV)	Atomic	BE(eV)	FWHM(eV)	Atomic
				%			%			%
O1s	-NO ₂ , -O-NO ₂	534.34	1.48	2.8	533.98	1.48	5.5	533.49	1.52	5.05
	O=C-OH(R)	533.36	1.31	6.07	533.21	1.04	3.91	532.74	0.85	1.69
	CO ₃ ²⁻	532.41	1.33	7.48	532.44	1.12	4.96	532.02	0.83	2.01
	-O-C-	531.56	1.04	3.15	531.71	1.02	3.06	531.34	0.76	1.24
	O=C-	530.89	1.25	2.63	531.04	1.3	2.42	530.75	1.44	2.91
C1s	O=C-OH(R),							288.89	1.48	3.26
	CO3 ²⁻	288.71	1.45	5.01	288.84	1.44	4.72			
	C=O	287.47	1.5	5.11	287.6	1.5	4.54	287.62	1.5	3.61
	O-C or C-N	286.3	1.45	11.01	286.37	1.5	9.3	286.14	1.5	10.17
	Aromatic C=C	285.07	1.41	18.52	285.27	1.46	20.98	284.89	1.44	21.66
	С-С, С-Н	284.44	1.28	32.82	284.6	1.22	35.98	284.5	1.1	43.7
N1s	-NO ₂ , -O-NO ₂	405.71	1.84	1.82	405.85	1.83	1.35	405.76	1.95	0.93
	Quaternary-N	403.09	0.66	0.05	402.44	1.5	0.16	403	1.98	0.48
	Pyrrolic-N	401.28	2	0.96	401.45	1.67	0.49	400.86	2	1.33
	Pyridonic-N	400.09	1.78	2.08	400.2	1.87	2.31	399.62	2	1.2
	Pyridinic-N	398.82	1.33	0.5	398.77	1.7	0.31	398.06	1.23	0.77

			HM300		HM500			HM700		
		BE(eV)	FWHM(eV)	Atomic	BE(eV)	FWHM(eV)	Atomic	BE(eV)	FWHM(eV)	Atomic
				%			%			%
O1s	-NO ₂ , -O-							535.09	1.5	0.59
	NO ₂	535.07	1.47	0.55	534.12	1.4	2.34			
	O=C-OH(R)	533.7	1.5	3.63	533.46	1.05	2.06	533.55	1.5	1.74
	CO3 ²⁻	532.78	1.33	4.05	532.59	1.39	5.87	532.66	1.42	2.73
	-O-C-	531.93	1.12	2.35	531.59	1.17	2.85	531.56	1.5	3.52
	O=C-	531.14	1.46	2.57	530.77	1.44	2.11	530.49	1.44	2.16
C1s	O=C-OH(R),				288.72	1.46	3.24	288.8	1.49	3.25
	CO3 ²⁻	288.85	1.45	2.8						
	C=O	287.4	1.5	3.77	287.48	1.5	3.54	287.63	1.46	3.09
	O-C or C-N	286.05	1.5	13.7	286.02	1.5	13.56	286.14	1.5	8.6
	Aromatic				285.04	1.19	12.72	285.36	1.23	6.23
	C=C	285	1.33	29.61						
	С-С, С-Н	284.49	1.21	34.36	284.42	1.33	48.73	284.31	1.15	65.01
N1s	-NO ₂ , -O-				406.09	0.58	0.11	401.2	2	0.67
	NO ₂	405.59	2.02	0.23						
	Quaternary-N	402.96	0.51	0.05	404.03	2	0.14	406.5	2.02	0.16
	Pyrrolic-N	400.76	2	0.55	401.57	1.06	0.2	403.59	2	0.23
	Pyridonic-N	400.1	1.51	1.27	399.98	1.93	2.31	397.99	1.21	0.59
	Pyridinic-N	399.06	1.68	0.5	398.46	1.48	0.22	399.78	2	1.42

Table S5: High resolution XPS data for HM300, HM500 and HM700

Table S6: High resolution XPS data for SM300, SM500 and SM700 $\,$

			SM300			SM500		SM700		
		BE(eV)	FWHM(eV)	Atomic	BE(eV)	FWHM(eV)	Atomic	BE(eV)	FWHM(eV)	Atomic
				%			%			%
O1s	-NO ₂ , -O-							533.87	1.47	2.14
	NO ₂	535.3	1.49	0.85	533.63	1.4	4.21			
	O=C-OH(R)	533.87	1.5	2.85	532.93	0.98	2.32	533.33	1.2	2.98
	CO3 ²⁻	532.86	1.5	4.81	532.17	1.04	2.99	532.53	1.18	3.14
	-O-C-	531.81	1.46	4.01	531.49	1	1.42	531.59	1.19	3.06
	O=C-	531.02	1.44	2.02	530.98	1.43	2.09	530.72	1.42	2.4
C1s	O=C-OH(R),				288.71	1.35	3.56	289.24	1.45	2.28
	CO3 ²⁻	288.77	1.46	3.59						
	C=O	287.47	1.5	3.77	287.47	1.5	2.78	287.83	1.5	3.26
	O-C or C-N	286.06	1.5	12.52	286.08	1.5	9.96	286.42	1.5	8.97
	Aromatic				284.85	1.24	24.46	285.04	1.44	32.33
	C=C	284.88	1.46	24.45						
	C-C, C-H	284.34	1.28	38.39	284.43	1.16	43.83	284.74	1.03	34.78
N1s	-NO ₂ , -O-	406.42	2.5	0.16	405.65	2.54	0.13	405.52	2.54	0.35
	NO ₂									
	Quaternary-N	404.31	0.62	0.02	402.22	2.05	0.33	402.58	2.05	0.52
	Pyrrolic-N	400.75	1.97	1.25	400.58	1.39	0.71	400.69	1.83	1.63
	Pyridonic-N	399.87	1.12	0.58	399.89	1.02	0.53	399.63	0.55	0.11
	Pyridinic-N	398.89	2	0.73	399	1.84	0.68	398.42	1.31	0.86
S2p	C-SO ₂ -C							168.74	1.81	0.97
	S-H, C-S-C							164.05	1.33	0.23

Figure S7: Resolved and assigned S2p HR-XPS spectra for SM700 (CPS – Counts per second).

Figure S8: Low Resolution survey TGA Graphs for (A) Raw BC, (B) SMBC, (C) HMBC and (D)NMBC