Self-assembly of supra-amphiphiles building block fabricated by β-cyclodextrin and adamantane-based ionic liquid

Xing Zhong, ${ }^{\text {a }}$ Caixia Hu,*a Xiaowei Yan, ${ }^{\text {bb }}$ Dongjian Zhu, ${ }^{\text {b }}$ Qiujuan Chen, ${ }^{\text {b }}$ Wenxue Li, ${ }^{\text {b }}$ Lizhen Feng ${ }^{b}$ and Yan Wei ${ }^{\text {b }}$
${ }^{a}$ State Key Laboratory for Nuclear Resources and Environment, and School of Chemistry, Biology and Materials Science, East China University of Technology, Nanchang, 330013, China.
${ }^{b}$ Guangxi Key Laboratory of Calcium Carbonate Resources Comprehensive Utilization, College of Materials and Environmental Engineering, Hezhou Unversity, Hezhou 542899, China
* Corresponding authors.
E-mail addresses: hezhou8@foxmail.com (C. Hu), yanxiaoweizb@163.com (X. Yan).

Synthetic process of AD-C $\mathrm{C}_{11} \mathrm{im}$

11-bromoundecyl adamantane-1-carboxylate (3.28 g) and 1-methylimidazole (0.99 g) were mixed in acetonitrile (60 mL) in a flask (250 mL), and the intermixture was refluxed with stirring for 48 hour. Then the obtained solution was condensed, cleaned with diethyl ether, and the crude product dissolved in methanol and dripped into diethyl ether (200 mL). Then pour out the ether layer and the remaining viscous liquids were washed twice with ethyl ether and dried to obtain the target surfactant AD-C ${ }_{11}$ im.

Scheme S1. The synthesis route of adamantane-based ionic liquid AD-C $\mathrm{C}_{11} \mathrm{im}$

$\begin{array}{llllllllllllllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & \begin{array}{c}110 \\ \mathrm{f} 1\end{array}\left(\begin{array}{llllllll}100 \\ (\mathrm{ppm})\end{array}\right. & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & -10\end{array}$

Fig.S1. The ${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR and ESI-MS spectrum of $\mathrm{AD}-\mathrm{C}_{11} \mathrm{im}$

Fig.S2. Electrical conductivity curves of AD-C $\mathrm{C}_{11} \mathrm{im}$ in aqueous solution at $25^{\circ} \mathrm{C}$.

Fig.S3. The aggregate size distribution ((a) by scattering intensity, (b) by volume) of 5 mM and 10 mM AD- $\mathrm{C}_{11} \mathrm{im}$ in aqueous solution.

Fig.S4. TG curves of (a) AD-C C_{11} im, (b) $\beta-C D$, (c) $A D-C_{11}$ im/ $\beta-C D$ physical mixtures and (d) AD$\mathrm{C}_{11} \mathrm{im} / \beta-C D$ inclusion complexes

Fig.S5. The aggregate size distribution (by volume) of 10 mM AD- $\mathrm{C}_{11} \mathrm{im} @ 1 \beta-C D$ in aqueous solution

Fig.S6. FT-IR spectra with full wavenumbers for $\beta-C D, A D-C_{11}$ im, $A D-C_{11}$ im@1 $1 \beta-C D, A D-$ $\mathrm{C}_{11} \mathrm{im} @ 2 \beta-C D$.

Fig.S7. SAXS measurement for the AD- $\mathrm{C}_{11} \mathrm{im} @ 2 \beta-C D$ at 30 mM .

