Supporting information

Novel Designed Azo Substituted Semi-cyanine Fluorescent Probe for

Cytochrome P450 Reductase Detection and Hypoxia Imaging in

Cancer Cells

Caiyue Wang, ^{a,b} Shuping Zhang, ^{a*} Junhai Huang, ^b Lei Cui, ^c Jin Hu, ^b Shaoying Tan^{b*}

^aCollege of Science, University of Shanghai for Science and Technology, Shanghai, China.
^bState Key Laboratory of New Drug and Pharmaceutical Process, Shanghai Institute of Pharmaceutical Industry, China State Institute of Pharmaceutical Industry, Shanghai, China, 1599 Zhangheng Road, Shanghai 201203, China. E-mail: tanshaoying2019@163.com.
^cCollege of Science, Shanghai University, Shanghai, China.

S1: The preparation of probe AZO-Cy:

Scheme 1. Synthetic schemes of 1 and probe AZO-Cy

Synthesis of compound 1-2

1-ethyl-2,3,3-trimethyl-5-nitroindolium iodide (600.0 mg, 2.6 mmol) and p-hydroxybenzaldehyde (377.0 mg, 3.1 mmol) were dissolved in 20 mL ethanol. Then methanesulfonic acid (272.0 mg, 2.8 mmol) was added and the mixture was stirred under nitrogen atmosphere at 80 °C for 4 h. The mixture was stirred overnight at -20 °C and filtrated to provide compound **1-4** (715.0 mg, 82%) as a bright blue solid. ¹H NMR (400 MHz, DMSO- d_6) δ 11.19 (s, 1H), 8.84 (d, J = 2.0 Hz, 1H), 8.59 (d, J = 16.0 Hz, 1H), 8.49 (dd, J = 8.8, 2.0 Hz, 1H), 8.25 (d, J = 8.8 Hz, 2H), 8.09 (d, J = 8.8 Hz, 1H), 7.52 (d, J = 16.0 Hz, 1H), 7.00 (d, J = 8.4 Hz, 2H), 4.69 (q, J = 6.8 Hz, 2H), 2.31 (s, 3H), 1.87 (s, 6H), 1.43 (t, J = 7.2 Hz, 3H), 1.23 (s, 1H).MS (ESI⁺) calcd for C₂₀H₂₁N₂O₃⁺[M]⁺ = 337.2, Found 337.2

Synthesis of 1

Compound **1-4** (370.0 mg, 1.1 mmol) and stannous chloride dihydrate (990.0 mg, 4.4 mmol) were dissolved in 6 N aqueous hydrochloric acid (12 ml) under nitrogen atmosphere at 90 °C for 5 h. The mixture was adjusted to pH 7 with 4 N NaOH aqueous solution (12 ml). The mixture was extracted with dichloromethane. The organic layer was washed with brine and dried over anhydrous Na₂SO₄. Then the solvent was concentrated to provide compound **1**(250.0 mg, 74%) as a bright blue solid. ¹H NMR (400 MHz, DMSO-*d*₆) δ 7.75 (d, *J* = 14.4 Hz, 1H), 7.65 (d, *J* = 8.4 Hz,

2H), 7.02 (d, J = 8.4 Hz, 1H), 6.71 (s, 1H), 6.56 (d, J = 8.4 Hz, 1H), 6.43 (d, J = 14.4 Hz, 1H), 6.16 (d, J = 8.8 Hz, 2H), 5.21 (s, 2H), 4.10 (q, J = 6.8, 2H), 1.59 (s, 6H), 1.24 (t, J = 7.0 Hz, 3H). ¹³C NMR (101 MHz, MeOD- d_4) δ 178.81, 173.77, 151.55, 148.02, 143.68, 134.03, 131.20, 120.61, 120.32, 113.71, 112.32, 107.90, 100.04, 49.74, 39.23, 25.90, 11.38. MS (ESI⁺) calcd for C₂₀H₂₃N₂O⁺ [M]⁺ = 307.2, Found 307.2.

S2: The preparation of PBS buffer:

8 g NaCl, 0.2 g KCl, 1.44 g Na₂HPO₄ and 0.24 g KH₂PO₄ were dissolved in 800 mL distilled water. The pH value of the solution was adjusted to 7.4 by HCl, and adding distilled water to 1L then can obtain the PBS buffer with the concentration of 0.01 M.

Table S1. Spectroscopic data for1 and AZO-Cy

Compounds	$\lambda_{abs}(nm)$	ε [M ⁻¹ cm ⁻¹]	$\lambda_{em}(nm)$	$\Phi_{f}^{[a]}$
1	450	17800		
AZO-Cy	450	74320	620	0.04
[a]Ref.1				

Ref.

 Lakowicz, J.R.Principles of Fluorescence Spectroscopy, Springer Maryland, 3rd edn., 2006, pp. 9-12

Fig. S1. UV-vis spectrum of compound AZO-Cy and 1

Fig. S2. Fluorescence response assays with the reductants, cations, anions and amino acids. Control: probe AZO-Cy (1 μ M)(0). Fluorescence responses of AZO-Cy (3 μ M) co-incubated with various interference (1 mM) and NADH (1 U) in PBS at 37°C with excitation wavelength at 500 nm. The reductants included VC(1), glutathione (2), cysteine (3), dithiothreitol (4), FeCl₂(5), glucose (6), tyrosine (7), Co²⁺(8),Zn²⁺(9),Fe³⁺(10),Ni²⁺(11),Cu²⁺(12),Cu⁺(13), Cr³⁺(14),Bi³⁺(15),Ag⁺(16),Mn²⁺(17),Sn²⁺(18),Al³⁺(19),Pd²⁺(20),ClO⁻(21), NO₃⁻(22),CH₃COO⁻(23), PO₄³⁻(24), HPO₄²⁻(25), P₂O₇⁴⁻(26), SO₃²⁻(27), S²⁻(28), HSO₃⁻(29)

Fig. S3 HPLC analysis of metabolism of AZO-Cy reacted with cytochrome P450 reductase at different reaction time (0, 30 s, 1, 2 and 5 min). AZO-Cy (1 μ M) and NADPH (0.1 mM) was treated with cytochrome P450 reductase (1 U). HPLC profiles were detected by UV at 450 nm.

LC-MS method:

chromatographic column: Agilent ZORBAX SB-Phenyl 4.6*75mm 3.5 μ m Phase A: 0.025%TFA aq. solution Phase B: 0.025%TFA CH₃CN solution Flow: 1.5 ml/min Column Oven: 40 °C Injection Volume: 3 μ l

Gradient Table: Time (min) mpA (%) mpB (%)

0	95	5
8	5	95
10	5	95

Detector: DAD (254 nm , 450 nm), ELSD

MS: ESI+, frag voltage 70 V

Table S2Compared with other probes

Probe	Rate	Conditions	
AZO-DCM	reach the plateau after mixed 7.5 min	Cytochrome P450 reductase is 1	Ref
		U/mL; [NADPH]= 1 mM;	
MAR	About 11 min; 1. 1×10 ⁻³ μMS ⁻¹	rat liver microsomes (226 mg/3 mL);	22
MASR	About 10 min; 2.1×10 ⁻³ μMS ⁻¹	[NADPH]= 50 μM	
BOD-Ly	reach the plateau after mixed 60 min	rat liver microsomes(100 µg mL ⁻¹)	26
1	None	None	28
This work	reach the plateau at about 4 min	Cytochrome P450 reductase is 1	
		U/mL; [NADPH]= 0.1 mM	

HNMR of compound 1-2

HNMR of compound 1

CNMR of compound 1

HRMS of AZO-Cy

HNMR of AZO-Cy

CNMR of AZO-Cy

