Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2019

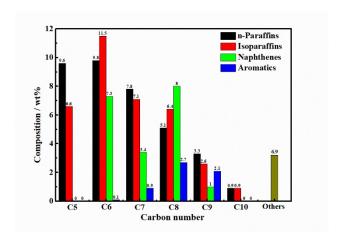


Figure S1 Composition of naphtha

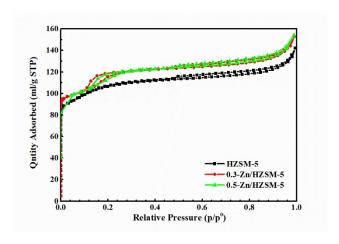


Figure S2 N_2 adsorption-desorption isotherms of HZSM-5 and Zn/HZSM-5 zeolites

There is a significant difference in the shapes of the isotherms of these samples. The HZSM-5 shows a typical type $\,\mathrm{I}\,$ isotherm for microporous materials with a limited number of mesopore, while the Zn-modified zeolites present a mixture of type $\,\mathrm{I}\,$ and type $\,\mathrm{IV}\,$ according to the IUPAC classification $^{\,\mathrm{I}}$. Steep uptake in the low-pressure region (p/p0<0.05) is the typical property of microporous compounds. The hysteresis loop appearing at the relative pressure $p/p0=0.5\sim1.0$ is usually associated with capillary condensation taking place in mesopore structures. After Zn-modification, A new H2 hysteresis loop is observed above $p/p0=0.1\sim0.3$, indicating the presence of some new mesopore in the modified zeolites.

Table S1 Proton affinities of three components in feed

Compound	n-hexane	methanol	isobutene	trimethylbenzene
Proton affinity	665	754	802	836
(kJ/mol)				

^a Taken from ref.1

References

(1) Haw JF, Phys Chem Chem Phys., 2002, 4, 5431–5441.

^b Taken from NIST Chemistry WebBook