Supplementary Information

A thermal-responsive microfluidic system integrated by shape memory polymer-modified textile and paper-based colorimetric sensor for human sweat glucose detection

Jing He^{a,b}, Gang Xiao^{a,b}, Xiaodie Chen^{a,b}, Yan Qiao^{a,b}, Dan Xu^{*c} and Zhisong Lu^{*a,b}

- ^{a.} Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, School of Materials & Energy, Southwest University, 1 Tiansheng Road, Chongqing 400715, P. R. China.
- ^{b.} Institute for Clean Energy & Advanced Materials, School of Materials & Energy, Southwest University, 1 Tiansheng Road, Chongqing 400715, P. R. China.
- ^{c.} Department of Gastroenterology, the Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Shengli Street Jiang'an District No. 26, Wuhan 430014, P. R. China.

*: Authors to whom correspondence should be addressed. Tel.: +86-23-68254732; Fax: +86-23-68254969. E-mail: zslu@swu.edu.cn (Z. S. Lu) or drxu0624@gmail.com (D. Xu).

Figure S1. Optimization of the amount of TMB (a), HRP (b) and GOD (c) at room temperature (A) and 60 °C (B), respectively.

Figure S2. Optimization of reaction time in the sensing unit.

Figure S3. Effect of sample volume on paper-based glucose detection.

Ref.	Analytical	Materials	Recognition element	dynamic range	e LOD
	technique	and platform			
[1]	Electrochemical	PET wristband/handband	GOD	0-300 μM	-
[2]	Electrochemical	Metal and Metal/Oxide thin fil	m Gold/Zinc Oxide	0.01-200mg/dl	0.1 mg/dl
[3]	Piezoelectrical	Tatto-Based and Nanoarrays	GOD	0-200 μM	0.01 mM
[4]	Colormetric	PDMS and Paper	GOD	0.5-15mM	200 µM
[5]	Colormetric	Cotton thread and paper	GOD	35-250 μM	35 µM
This wo	ork Colormetric	Cotton and paper	GOD	0-600 μM	13.49 µM

References:

[1] Gao W, Emaminejad S,Nyein H Y Y, et al. Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis [J]. Nature, 2016, 529(7587): 509-514.

[2] Munje R D, Muthukumar S, Prasad S. Lancet-free and label-free diagnostics of glucose in sweat using Zinc Oxide based flexible bioelectronics[J]. Sensors and Actuators B: Chemical, 2017, 238: 482-490.

[3] Han W, He H, Zhang L, et al. A self-powered wearable noninvasive electronic-skin for perspiration analysis based on piezo-biosensing unit matrix of enzyme/ZnO nanoarrays [J]. ACS Applied Materials & Interfaces, 2017, 9(35):29526-29537.

[4] Koh A, Kang D, Xue Y, et al. A soft, wearable microfluidic device for the capture, storage, and colorimetric sensing of sweat [J]. Science Translational Medicine, 2016, 8(366):366ra165.

[5] Xiao G, He J, Chen X, et al. A wearable, cotton thread/paper-based microfluidic device coupled with smartphone for sweat glucose sensing[J]. Cellulose, 2019, 26(7): 4553-4562.