Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2019

Electronic supplementary information

[Dimethylformamide-Stabilised Palladium Nanoclusters Catalysed Coupling Reactions of Aryl Halides with Hydrosilanes/Disilanes]

Tatsuki Nagata, ^aTakeru Inoue, ^a Xianjin Lin, ^a Shinya Ishimoto, ^a Seiya Nakamichi, ^a Hideo Oka, ^a Ryota Kondo, ^a Takeyuki Suzuki, ^b Yasushi Obora*^a

^aDepartment of Chemistry and Materials Engineering, Faculty of Chemistry, Materials and Bioengineering,Kansai University, Suita, Osaka 564-8680, Japan ^bComprehensive Analysis Center, The Institute of Scientific and Industrial Research (ISIR), Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0057, Japan Email obora@kansai-u.ac.jp

Table of Contents

S2: Figure S1 NMR spectra

S2: FT-IR measurement (red) DMAc displaced Pd NCs (blue) as prepared Pd NCs

S3: XPS spectra

S5: A plausible reaction mechanism

S6: Table S2 concentration of K and Pd by ICP-AES

S6: Reference

S7: Copies of ¹H (400 MHz, CDCl₃) and ¹³C NMR spectra for **3a**. S8: Copies of ¹H (400 MHz, CDCl₃) and ¹³C NMR spectra for **3b**. S9: Copies of ¹H (400 MHz, CDCl₃) and ¹³C NMR spectra for **3c**. S10: Copies of ¹H (400 MHz, CDCl₃) and ¹³C NMR spectra for **3d**. S11: Copies of ¹H (400 MHz, CDCl₃) and ¹³C NMR spectra for **3e**. S12: Copies of ¹H (400 MHz, CDCl₃) and ¹³C NMR spectra for **3f**. S13: Copies of ¹H (400 MHz, CDCl₃) and ¹³C NMR spectra for **3g**. S14: Copies of ¹H (400 MHz, CDCl₃) and ¹³C NMR spectra for **3h**. S15: Copies of ¹H (400 MHz, CDCl₃) and ¹³C NMR spectra for **3i**. S16: Copies of ¹H (400 MHz, CDCl₃) and ¹³C NMR spectra for **5a**. S17: Copies of ¹H (400 MHz, CDCl₃) and ¹³C NMR spectra for **5b**. S18: Copies of ¹H (400 MHz, CDCl₃) and ¹³C NMR spectra for 5c. S19: Copies of ¹H (400 MHz, CDCl₃) and ¹³C NMR spectra for 5d S20: Copies of ¹H (400 MHz, CDCl₃) and ¹³C NMR spectra for 5e. S21: Copies of ¹H (400 MHz, CDCl₃) and ¹³C NMR spectra for 5f. S22: Copies of ¹H (400 MHz, CDCl₃) and ¹³C NMR spectra for 5g.

Figure S1 ¹H NMR (400 MHz, D₂O, 20 °C) spectra of (a) Pd NCs and (b) DMAc displaced Pd NCs

Figure S2 FT-IR measurement (red) DMAc displaced Pd NCs (blue) as prepared Pd NCs

Figure S3 XPS wide scan spectra of (a) Pd NCs, (b) DMAc-substituted Pd NCs, (c) Pd NCs–DMF at the third measurement, and (d) DMAc-substituted Pd NCs at the third measurement. Table S1 XPS peak positions, FWHMs

		Binding Energy (eV) [FWHM]					
Element	Pd 3d _{5/2}	Pd 3d _{3/2}	N 1s	O 1s	C 1s		
(a) Pd NCs	338.8 [1.2]	344.0 [1.5]	400.8 [2.4]	532.8 [3.0]	288.2[1.5]		
	337.2 [2.3]	342.1 [2.2]		531.9 [1.5]	286.4[1.4]		
					285.1[1.1]		
(b)DMAc-substituted Pd NCs	338.5 [1.6]	343.7 [1.9]	402.2 [1.5]	532.5 [1.9]	288.2 [1.5]		
	336.6 [2.1]	341.8 [2.1]	400.5 [2.0]		286.4 [1.4]		
					285.1 [1.1]		
(c)Pd NCs–DMF	338.8 [0.9]	344.0 [1.3]	400.7 [2.4]	533.6 [2.9]	288.5 [1.2]		
at the third measurement	338.0 [2.1]	343.3 [2.3]		532.1 [1.8]	286.3 [2.2]		
(d)DMAc-substituted Pd NCs	335.7 [1.8]	342.1 [1.7]	399.8 [2.4]	532.0 [1.8]	288.0 [1.4]		
at the third measurement	334.7 [1.4]	340.2 [1.6]			285.7 [1.4]		
					284.6 [1.1]		

(A) Figure S4 XPS Spectra of C 1s from (i) Pd NCs, (ii) DMA-substituted Pd NCs, (iii) Pd NCs– DMF at the third measurement, and (iv) DMAc-substituted Pd NCs at the third measurement,

(B) Figure S5 XPS Spectra of O 1s from (i) Pd NCs, (ii) DMAc-substituted Pd NCs, (iii) Pd NCs– DMF at the third measurement, and (iv) DMAc-substituted Pd NCs at the third measurement,

(C) Figure S6 XPS Spectra of N 1s from (i) Pd NCs, (ii) DMAc-substituted Pd NCs, (iii) Pd NCs– DMF at the third measurement, and (iv) DMAc-substituted Pd NCs at the third measurement,

Figure S7 a plausible reaction mechanism of Pd NCs catalyzed coupling reactions of aryl halides with hydrosilanes(left)¹/disilanes(right)²

<intensity></intensity>			<concentration></concentration>			
element	Na	Pd	element	Na	Pd	
wavelength(nm)	588.995nm	340.458nm	wavelength(nm)	588.995nm	340.458nm	
Run 1	15.1392	0.627558	unit	ppm	ppm	
Run 2	15.1701	0.625988	Run 1	201.354	2.3557	
Run 3	15.1219	0.624458	Run 2	201.766	2.34897	
			Run 3	201.123	2.34242	
average	15.1438	0.626001				
			average	201.414	2.34903	
R	0.048169	0.0031				
SD	0.024401	0.00155	R	0.643555	0.013282	
RSD	0.16113	0.247599	SD	0.326007	0.006641	
			RSD	0.161859	0.282717	

Table S2 concentration of K and Pd by ICP-AES

Reference

- J. Cao, Y.-M. Cui, Z. Xu, J. Zhang, L.-W. Xu, Z.-J. Zheng and J.-Z. Xu, *Chem. An Asian J.*, 2017, **12**, 1749–1757.
- 2 E. Shirakawa, T. Kurahashi, H. Yoshida and T. Hiyama, *Chem. Commun.*, 2000, **0**, 1895.

3a Dimethyldiphenylsilane

3b dimethyl(phenyl)(p-tolyl)silane

3c (4-methoxyphenyl)dimethyl(phenyl)silane

3d (4-(tert-butyl)phenyl)dimethyl(phenyl)silane

3e dimethyl(phenyl)(4-(trifluoromethyl)phenyl)silane

3f methyl 4-(dimethyl(phenyl)silyl)benzoate

3g methyltriphenylsilane

3h triethyl(phenyl)silane

3i triethoxy(phenyl)silane

5a trimethyl(phenyl)silane

5b trimethyl(p-tolyl)silane

5c (4-methoxyphenyl)trimethylsilane

5d (4-(tert-butyl)phenyl)trimethylsilane

5e 1-(4-(trimethylsilyl)phenyl)ethan-1-one

5f methyl 4-(trimethylsilyl)benzoate

5g trimethyl(4-(trifluoromethyl)phenyl)silane

