Direct synthesis of covalent triazine-based frameworks (CTFs)

through aromatic nucleophilic substitution reactions

Tao Chen, Wen-Qian Li, Wei-Bo Hu,* Wen-Jing Hu, Yahu A. Liu, Hui Yang* and Ke Wen*

Correspondence Address

Prof. Dr. Ke Wen Shanghai Advanced Research Institute, Chinese Academy of Science No. 99 Haike Road, Zhangjiang Hi-Tech Park, Pudong, Shanghai, 201210 P. R. China E-mail: wenk@sari.ac.cn

Table of Contents

General	S4
Synthesis of 2,4,6-triphenyl-1,3,5-triazine (M1)	S5
Fig. S1. HR-ESI-MS spectrum of M1	S5
Fig. S2. ¹ H NMR of M1	S6
Synthesis of 1,4-bis(4,6-dichloro-1,3,5-triazine-2-yl)benzene (M2)	S7
Fig. S3. HR-ESI-MS spectrum of M2	S 7
Fig. S4. ¹ H NMR of M2	S 8
Synthesis of CTF-1	S9
Synthesis of CTF-2	S9
Fig. S5. The ideal network structures of CTF-1 or CTF-2	S9
XPS of CTF-1 and CTF-2	S10
Table S1. Peaks of CTF-1 in XPS survey spectrum	S10
Fig. S6. C1s scan and N1s scan of CTF-1	S10
Table S2. Peaks of CTF-2 in XPS survey spectrum	S11
Fig. S7. C1s scan and N1s scan of CTF-2	S11
Porosity of CTF-1 and CTF-2	S12
Fig. S8. Nitrogen sorption isotherm of CTF-1 and CTF-2.	S12
Table S3. Porosity data of CTF-1 and CTF-2 .	S12
Band gap values calculated by DFT method	S13
Fig. S9 Band gap values of the CTF s calculated by DFT method	S17
Fig. S10 Ultraviolet-visible diffuse reflectance spectroscopy of the	S17
CTFs	017
Fig.S11. Images of CTF-1 (left) and CTF-2 (right) on water	S18
Fig. S12. FTIR of CTF-2 (blue) and cvanuric chloride (black)	S18
Charge Distribution Calculation	S19
Fig. S13. Structure formula of M3 used in place of CTF-1 : the charge	S19
distribution of blue dotted rectangle was exhibited at Fig. S15 , Fig. S16	
and Table S4	
Fig. S14. Structure formula of M4 used in place of CTF-2; the charge	S19
distribution of blue dotted rectangle was exhibited at Fig. S17, Fig. S18	
and Table S5	
Fig. S15. The local charge distribution of M3	S20
Fig. S16. The local serial number of M3	S20
Table S4. The atom charge value of M3	S20
Fig. S17. The local charge distribution of M4	S21
Fig. S18. The local serial number of M4	S21
Table S5. The atom charge value of $M4$	S21
Fig. S19. FE-SEM and FE-TEM of both CTFs.	S22

Reference	S22
CTF-2 excited at 800nm	
Table S6. The quantum yields of up-conversion fluorescence of CTF-1 and	S22

General

Unless otherwise noted, reagents and solvents were purchased from commercial sources and were used as received. Toluene and 1,4-dioxane were dried with activated

molecular(4A molecular sieves, 3-5 mm, pellets, activated under 400 °C in an oven

for 4 h). ¹H-NMR spectra were recorded on a Bruker Avance III HD 500 NMR spectrometer or on a 400 MHz. The Fourier-transformed infrared (FT-IR) spectra were obtained on a PerkinElmer Spectrum Two FT-IR spectrometer with Attenuated Total Reflection (ATR) technique. Ultraviolet-visible Diffuse Reflectance Spectra (UV-Vis DRS) were collected on a UV-2700 using absorption value of BaSO₄ as baseline. TGA were carried on a SDT Q600 thermogravimetric analyzer, and the samples were heated to 1000 °C with a rate of 10 °C/min under a nitrogen atmosphere. The FE-SEM were conducted on a Hitachi S-4800 field emission scanning electron microscope. The FE-TEM were conducted on a JEOL JEM-2100F. The PXRD were obtained on a Bruker AXS D8 ADVANCE X-ray diffractometer with a Cu K α (λ = 1.5418 Å) radiation source operated at 40 kV and 40 mA. Surface area, nitrogen adsorption isotherms (77K) and pore size distributions were measured on a JW-

BK122W, the sample were degassed at 80 $^\circ C$ for 6h under reduced pressure before

analysis. ¹³C cross polarization magic angle spinning nuclear magnetic resonance (¹³C CP/MAS NMR) spectra were recorded on a 700 MHz Bruker Avance NEO spectrometer. Mass spectra (ESI analysis) were recorded on an Esquire 6000 spectrometer (LC/MS). The photoemission spectra were recorded on a optical path system equipped with a femtosecond laser (Coherent ChamelonVision, 80 MHz) and a spectrometer (Horiba-IH530), and the background (silicon oxide, crystal orientation: 100, thickness of oxide layer: 200 nm, electrical resistivity $< 0.0015\Omega \cdot cm$) purchased from a commercial source. The powder was dispersed in dichloromethane (DCM) before coated on the background, then the DCM was evaporated in a cupboard provided with a draught. The photocatalytic experiments were performed under visible light irradiation (>420 nm) with a Xe 500W lamp(Perfectlight). The

temperature of the system was maintained at 25 °C by the flow cooling water. In the

experiments, 50 mg of photocatalyst powder was dispersed in 100 mL aqueous solution contained 10 mL triethanolamine (TEOA) as a photogenerated hole scavenger. 1.5 mg (3 wt%) of Pt was added as cocatalyst by in-situ photodeposition method using H₂PtCl₆. The mixture was bubbled with argon (carrier gas) from the bottom of the reactor to remove air thoroughly. The power density of the irradiation is \sim 130 mW/cm² as measured by an irradiance meter. The hydrogen evolution was analyzed by gas chromatography (SHIMADZU, GC-2014) equipped with a thermal conductive detector(TCD).

Synthesis of 2,4,6-triphenyl-1,3,5-triazine (M1)

To dry toluene (20 mL) in a three-necked flask was added a solution of phenyllithium in ethyl ether (15 mL, 1.0 M, 15.0 mmol) under nitrogen, and the resulting solution was then refluxed under nitrogen. After a solution of 2,4,6-trichloro-1,3,5-triazine (cyanuric chloride) (940.8 mg, 98%, 5.0 mmol) in dry dioxane (10 mL) was added slowly, the reaction mixture was continually refluxed for 22 h, and then cooled to room temperature, quenched by adding a saturated NH₄Cl aqueous solution (100 mL),

and extracted with EtOAc (3×50 mL). The combined extras were washed with dried

over anhydrous Na₂SO₄, and concentrated. The residual crude was subjected to chromatography to afford **M1** (1.35 g, 87%). ¹H-NMR (400 MHz, CDCl₃), δ 7.71 (m, 6H), 7.55 (m, 6H), 7.45(m, 3H). HRMS (m/z) calcd. for C₂₁H₁₆N₃ [M+H]⁺ 310.1339; found 310.1344.

Fig. S1. HR-ESI-MS spectrum of 2,4,6-triphenyl-1,3,5-triazine (M1).

Fig. S2. ¹H NMR of M1

Synthesis of 1,4-bis(4,6-dichloro-1,3,5-triazine-2-yl)benzene (M2)

To dry toluene (30 mL) in a three-necked flask was added 1,4-dibromobenzene (241 mg, 98%, 1 mmol), and a solution of *n*-butyllithium in *n*-hexane (0.8 mL, 2.5 M, 2 mmol) was added slowly at room temperature under nitrogen. The reaction mixture was cooled to -10 °C. After a solution of 2,4,6-trichloro-1,3,5-triazine (3.76 g, 98%, 20 mmol) in dry 1,4-dioxane (20 mL) was added slowly, the reaction mixture was continually stirred for 1 h at -10 °C, then quenched by adding H₂O (100 mL), and extracted with EtOAc (3 × 30 mL). The combined extracts were washed with dried over anhydrous Na₂SO4, and concentrated. The residual crude was subjected to chromatography to afford low-melting 1,4-bis(4,6-dichloro-1,3,5-triazine-2-yl)benzene (32 mg, 9%). ¹H NMR (500 MHz, CDCl₃) , δ 7.36 (s, 4H). HRMS (m/z) calc. for C₁₂H₄N₆Cl₄ [M]⁺ 371.9246; found 371.1016.

Fig. S3. HR-ESI-MS spectrum of M2.

Fig. S4. ¹H NMR of **M2**.

Synthesis of CTF-1

To solution of 1, 4-diiodobenzene (2.69 g, 98%, 8.0 mmol) in dry toluene (50 mL) in a three-necked flask was added a solution of *n*-butylllithium in n-hexane (7.0 mL, 2.5 M, 17.5 mmol) under nitrogen (Caution: the standard operating procedure of *n*-BuLi should be strictly followed for operators' safety), and the resulting mixture was stirred as room temperature for 30 min, and then heated till refluxing. After a solution of 2,4,6-trichloro-1,3,5-triazine (940 mg, 98%, 5 mmol) in dry toluene (15 mL) was added dropwise, the reaction mixture was refluxed for 22 hours, cooled to room temperature, and quenched by adding H₂O (10 mL). The precipitate formed were harvested by filtration, followed by water scrubbing. The crude product was washed with toluene (3 × 30 mL), dioxane (3 × 30 mL), ethyl acetate(5 × 100 mL), methanol (5 × 100 mL) and water (5 × 200 mL), and dried under reduced pressure (110 °C, 6 h) to afford **CTF-1** (904 mg, 88.2 %).

NOTICE: Model molecules (such as TriPh-triazine) and monomers are soluble in common organic solvents, and the as-synthesized products were washed by toluene, 1,4-dioxane, ethyl acetate, methanol and water to remove oligomers, leaving behind the polymers.

Synthesis of CTF-2

CTF-2 was prepared by following a procedure similar to the above one with using 4,4'-diiodobiphenyl (3.31 g, 98%, 8.0 mmol) in yield of 96%.

Fig. S5. The ideal network structures of CTF-1 or CTF-2.

XPS of CTF-1 or **CTF-2**

Table S1. Peaks of CTF-1	in XPS	survey spectrum.
--------------------------	--------	------------------

CTF-1	Start BE	Peak	End	Height	FWHM	Area (P) CPS	Area (N)	Atomic %	Peak Type
		BE	BE	CPS	(eV)	(eV)	TPP-2M		
Cl2p	204.58	197.88	194.28	197.15	2.31	875.44	0	0.44	Standard
N1s	402.88	398.45	394.58	5721.47	2.25	14468.37	0.11	12.69	Standard
C1s	291.08	284.37	281.38	28958.81	1.65	61037.64	0.77	86.58	Standard
I3d	636.08	620.52	615.38	1479.14	1.62	7486.19	0	0.28	Standard

Fig. S6. C1s scan (left) and N1s (right) scan of **CTF-1**: the ratio of carbon (286.2 eV, triazine): carbon (284.3 eV, phenyl) = 1 : 2.55.

CTE 2	Stort DE	Dool: DE	End DE	Unight CDS	FWHM	Area (P) CPS.	Area (N)	Atomia 0/	Dool: Turpo
C1F-2	Start DE	Feak DE	EIQ DE	Height CF5	(eV)	(eV)	TPP-2M	Atomic 76	геак туре
Cl2p	205.18	197.22	193.98	161.39	0.33	664.7	0	0.24	Standard
N1s	403.58	398.29	394.68	4645.04	2.69	13046.28	0.1	8.04	Standard
C1s	290.38	284.27	281.28	47129.3	1.62	91717.69	1.16	91.44	Standard
I3d	636.18	620.45	613.48	1729.42	1.85	10429.53	0	0.28	Standard

Table S2. Peaks of CTF-2 in XPS survey spectrum.

Fig. S7. C1s scan (left) and N1s scan (right) of **CTF-2**: the ratio of carbon (286.2 eV, triazine) : carbon (284.3 eV, phenyl) = 1 : 5.71.

Porosity of CTF-1 or CTF-2

Fig. S8. Nitrogen sorption isotherm of CTF-1 (left) and CTF-2 (right).

Sample	BET surface area (m ^{2/} g)	Langmuir surface area (m ² /g)	Pore diameter* (nm)	Pore Volume** (cm ³ /g)
CTF-1	41.03	185.64	23.93	0.231
CTF-2	99.40	451.16	15.61	0.368

Table S3. Porosity data of the CTFs

* : BJH adsorption average pore width (4V/A).

****:** BJH adsorption cumulative pore volume.

Band gap values calculated by DFT method

DMol3 package (Materials Studio 8.0) was used to optimized the geometric configurations and calculated band gap values of the **CTF**s.

DFT calculations under the local density approximation (LDA) and using the PWC functional in the Dmol3 code after geometry optimization. Electronic parameters are listed below: Spin polarization: restricted Basis set: DNP Functional: PWC SCF density convergence: 1.0E-6 SCF charge mixing 2.0E-1 Global orbital Cutoff: 3.7 Å k-point set: fine (1x1x1)

CTF-1, Orientation standard: A along X, B in XY plane.

\$coordinates

С	18.12221035086192	10.46286302395696	0.0000000000000000
С	-2.14115847371256	14.45941507653451	0.000000000000000
С	9.06338968329586	10.46286302395696	0.0000000000000000
С	2.14115847371256	14.45941507653451	0.0000000000000000
С	13.59280001707889	2.61769419908662	0.0000000000000000
С	0.0000000000000000	18.16801034093209	0.0000000000000000
С	-4.52941033378303	13.08055722304359	0.0000000000000000

С	15.73395849079145	9.08400517046604	0.000000000000000
С	4.52941033378303	13.08055722304359	0.000000000000000
С	11.45164154336633	9.08400517046604	0.000000000000000
С	0.0000000000000000	20.92572604791393	0.000000000000000
С	13.59280001707889	5.37540990606847	0.000000000000000
С	20.40165954553990	9.14579228512763	0.000000000000000
Н	20.33139607757273	7.08182750034632	0.000000000000000
С	9.06428180410221	13.09545930279883	0.000000000000000
Н	10.88685947433472	14.06659174673589	0.000000000000000
С	11.31245870159456	1.30216865718436	0.000000000000000
Н	9.56014449932922	2.39500099802862	0.000000000000000
С	-6.80885952846101	14.39762795998319	0.000000000000000
Н	-6.73859606049384	16.46159274476451	0.000000000000000
С	4.52851821297668	10.44796094420172	0.000000000000000
Н	2.70594054274417	9.47682850026466	0.0000000000000000
С	2.28034131548433	22.24125158792647	0.000000000000000
Н	4.03265551774967	21.14841924708221	0.000000000000000
С	-2.28034131548433	22.24125158792647	0.0000000000000000
Н	-4.03265551774967	21.14841924708221	0.000000000000000
С	6.80885952846101	14.39762795998319	0.000000000000000
Н	6.73859606049384	16.46159274476451	0.000000000000000
С	-4.52851821297668	10.44796094420172	0.0000000000000000
Н	-2.70594054274417	9.47682850026466	0.000000000000000
С	15.87314133256322	1.30216865718436	0.000000000000000
Н	17.62545553482856	2.39500099802862	0.0000000000000000
С	6.78394048861788	9.14579228512763	0.000000000000000
Н	6.85420395658505	7.08182750034632	0.000000000000000
С	18.12131823005557	13.09545930279883	0.000000000000000
Н	16.29874055982306	14.06659174673589	0.000000000000000
Ν	-2.23293663612923	16.98480006614827	0.000000000000000
N	0.0000000000000000	13.11724036170455	0.0000000000000000
Ν	2.23293663612923	16.98480006614827	0.0000000000000000
Ν	15.82573665320812	6.55862018085228	0.000000000000000
N	13.59280001707889	10.42617988529600	0.000000000000000
N	11.35986338094966	6.55862018085228	0.000000000000000
\$end			

DFT energy gap:	0.099155 Ha	2.698 eV
valence band edge:	-0.248788 Ha	-6.770 eV
conduction band edge:	-0.149633 Ha	-4.072 eV

CTF-2, Orientation standard: A along X, B in XY plane.

¢ 1	1
Scoord	linates
φ	

С	27.36833350231642	13.23186756930539	-0.45303817531668
С	29.61856741582871	14.54278683574784	-0.47641271176223
Н	27.29137307739859	11.19997646542643	-0.82199868989521
Н	31.37215306362547	13.54762248956621	-0.93012806476662
С	16.03213130280931	17.08573828856199	-0.45303817531668
С	13.77172496144084	18.37903838734243	-0.47641271176223
Н	17.83028082924390	18.03503415721923	-0.82199868989521
Н	13.75676974069723	20.39527027946609	-0.93012806476662
С	18.36268245813128	5.34136384053068	-0.45303817531668
С	18.37285488787719	2.73714447719750	-0.47641271176223
Н	16.64149335850425	6.42395907764212	-0.82199868989521
Н	16.63422446082404	1.71607692936576	-0.93012806476662
С	-6.78061774726751	22.42710212909267	-0.45303817531668
С	-9.03085166077979	21.11618286453994	-0.47641271176223
Н	-6.70365732234968	24.45899323297163	-0.82199868989521
Н	-10.78443730857656	22.11134720883184	-0.93012806476662
С	4.55558445223961	18.57323141172579	-0.45303817531668
С	6.81599079360808	17.27993131105562	-0.47641271176223
Н	2.75743492580501	17.62393554306855	-0.82199868989521
Н	6.83094601435168	15.26369941893197	-0.93012806476662
С	2.22503329691763	30.31760585786738	-0.45303817531668
С	2.21486086717172	32.92182522309028	-0.47641271176223
Н	3.94622239654467	29.23501062264566	-0.82199868989521

Н	3.95349129422487	33.94289276903230	-0.93012806476662
С	-2.22503329691763	30.31760585786738	0.45303817531668
С	-2.21486086717172	32.92182522309028	0.47641271176223
Н	-3.94622239654467	29.23501062264566	0.82199868989521
Н	-3.95349129422487	33.94289276903230	0.93012806476662
С	6.78061774726751	22.42710212909267	0.45303817531668
С	9.03085166077979	21.11618286453994	0.47641271176223
Н	6.70365732234968	24.45899323297163	0.82199868989521
Н	10.78443730857656	22.11134720883184	0.93012806476662
С	-4.55558445223961	18.57323141172579	0.45303817531668
С	-6.81599079360808	17.27993131105562	0.47641271176223
Н	-2.75743492580501	17.62393554306855	0.82199868989521
Н	-6.83094601435168	15.26369941893197	0.93012806476662
С	22.81274905196655	5.34136384053068	0.45303817531668
С	22.80257662222063	2.73714447719750	0.47641271176223
Н	24.53393815159358	6.42395907764212	0.82199868989521
Н	24.54120704927378	1.71607692936576	0.93012806476662
С	13.80709800778140	13.23186756930539	0.45303817531668
С	11.55686409426912	14.54278683574784	0.47641271176223
Н	13.88405843269923	11.19997646542643	0.82199868989521
Н	9.80327844647236	13.54762248956621	0.93012806476662
С	25.14330020728852	17.08573828856199	0.45303817531668
С	27.40370654865699	18.37903838734243	0.47641271176223
Н	23.34515068085392	18.03503415721923	0.82199868989521
Н	27.41866176940059	20.39527027946609	0.93012806476662
С	25.10705308891582	14.49556385922884	0.000000000000000
С	29.68702713265066	17.13981310587459	0.000000000000000
С	22.72070659812321	13.11780607011733	0.000000000000000
С	16.06837842118200	14.49556385922884	0.000000000000000
С	11.48840437744716	17.13981310587459	0.000000000000000
С	18.45472491197461	13.11780607011733	0.000000000000000
С	20.58771575504892	6.66784197994038	0.000000000000000
С	20.58771575504892	1.37934348664888	0.000000000000000
С	20.58771575504892	9.42335755816339	0.0000000000000000
С	-4.51933733386691	21.16340584105895	0.0000000000000000
С	-9.09931137760175	18.51915659441319	0.0000000000000000
С	-2.13299084307430	22.54116363017045	0.0000000000000000
С	4.51933733386691	21.16340584105895	0.000000000000000
С	9.09931137760175	18.51915659441319	0.000000000000000
С	2.13299084307430	22.54116363017045	0.000000000000000
С	0.000000000000000	28.99112771845768	0.000000000000000
С	0.000000000000000	34.27962621174918	0.000000000000000
С	0.000000000000000	26.23561214023467	0.000000000000000
N	20.58771575504892	14.45958994234148	0.0000000000000000

Ν	18.35920141253369	10.59968987802828	0.000000000000000
Ν	22.81623009756413	10.59968987802828	0.000000000000000
Ν	0.000000000000000	21.19937975605657	0.000000000000000
Ν	2.22851434251522	25.05927982225949	0.000000000000000
Ν	-2.22851434251522	25.05927982225949	0.0000000000000000
\$end			
DFT energy gai	o: 0.094089	Ha 2.560 eV	

DFT energy gap:	0.094089 Ha	2.560 e
valence band edge:	-0.226790 Ha	-6.171 eV
conduction band edge:	-0.132700 Ha	-3.611 eV

Fig. S9. Band gap values of the CTFs calculated by DFT method.

Fig. S10. Ultraviolet-visible diffuse reflectance spectroscopy of the CTFs.

Fig. S11. Images of CTF-1 (left) and CTF-2 (right) on water.

Fig. S12. FTIR of CTF-2 (blue) and cyanuric chloride (black).

Charge Distribution Calculation

The force field^[1] (MM2) was used to minimize the energy of the **M3** and **M4** to get their optimized configurations, subsequently, the charges was calculated by Extended Hückel method, and exhibited on the solvent accessible surface of each molecular.

Fig. S13. Structure formula of M3 used in place of CTF-1: the charge distribution of blue dotted rectangle was exhibited at Fig. S15, Fig. S16 and Table S4.

Fig. S14. Structure formula of M4 used in place of CTF-2; the charge distribution of blue dotted rectangle was exhibited at Fig. S17, Fig. S18 and Table S5.

Fig. S15. The local charge distribution of M3.

Fig. S16. The local serial number of M3.

Atom	Charge (Hückel)	Atom Charge (Hückel)		Atom	Charge (Hückel)
C (1)	0.028544	C (7)	0.319123	N (13)	-0.31195
C (2)	-0.03554	C (8)	0.318347	N (14)	-0.30825
C (3)	-0.03581	N (9)	-0.3133	C (15)	0.318086
C (4)	0.029601	C (10)	0.31931	N (16)	-0.31114
C (5)	-0.03624	N (11)	-0.31382	C (17)	0.319247

Table S4.	The atom	charge	value	of M3 .
-----------	----------	--------	-------	----------------

Fig. S17. The local charge distribution of M4.

Fig. S18. The local serial number of M4.

			0		
Atom	Charge (Hückel)	Atom	Charge (Hückel)	Atom	Charge (Hückel)
C(1)	0.318113	C(0)	0.321438	C (90)	-0.0417269
C (1)	0.318052	C (9)	-0.31493	C (89)	-0.036259
C (2)	-0.313728	N (10)	0.317622	C (90)	0.0516172
N (3)	0 318269	C (11)	-0 312059	C (91)	-0.0415724
C (4)	0.010=07	N (12)	0.01=009	C (92)	

Table S5.	The atom	charge	value	of M4.
-----------	----------	--------	-------	--------

	-0.31534		0.0233751		-0.036578
N (5)		C (85)		C (93)	
	0.31941		-0.0365876		0.0234154
C (6)		C (86)		C (94)	
	-0.317918		-0.0417059		-0.0364851
N (7)		C (87)		C (95)	
	-0.319842		0.0518759		-0.0417057
N (8)		C (88)		C (96)	

Fig. S19. FE-SEM of CTF-1(A), CTF-2 (B); FE-TEM of CTF-1 (C, E) and CTF-2 (D, F).

Table S6.	The	quantum	yields	of	up-convers	ion	fluorescence	of	CTF-1	and	CTF-2
excited at 8	300m	m									

	Cursor1-2:	Cursor3-4:	Quantum	Abs	Peak	Peak	Peak
	788.77-	416.53 -	Yield		Wavelength	Count	FWH
	809.34(nm)	764.48(nm)					М
CTF-1	170108693	4222	0.000299	0.077	799.06	49783.14	4.00
CTF-2	183772752	25933	0.057082	0.002	799.06	53819.17	4.00

Reference

[1] Lan, Z. A.; Fang, Y. X.; Zhang, Y. F. and Wang, X. C. *Angew.Chem. Int. Ed.*, **2018**, *57*,470-474.

[2] N. L. Allinger, J. Am. Chem. Soc., 1977, 99 (25), 8127 - 8134.