Direct synthesis of covalent triazine-based frameworks (CTFs)
 through aromatic nucleophilic substitution reactions

Tao Chen, Wen-Qian Li, Wei-Bo Hu,* Wen-Jing Hu, Yahu A. Liu, Hui Yang* and Ke Wen*

Correspondence Address

Prof. Dr. Ke Wen
Shanghai Advanced Research Institute, Chinese Academy of Science
No. 99 Haike Road, Zhangjiang Hi-Tech Park, Pudong, Shanghai, 201210 P. R. China
E-mail: wenk@sari.ac.cn

Table of Contents

General S4
Synthesis of 2,4,6-triphenyl-1,3,5-triazine (M1) S5
Fig. S1. HR-ESI-MS spectrum of M1 S5
Fig. S2. ${ }^{1} \mathrm{H}$ NMR of M1 S6
Synthesis of 1,4-bis(4,6-dichloro-1,3,5-triazine-2-yl)benzene (M2) S7
Fig. S3. HR-ESI-MS spectrum of M2 S7
Fig. S4. ${ }^{1} \mathrm{H}$ NMR of M2 S8
Synthesis of CTF-1 S9
Synthesis of CTF-2 S9
Fig. S5. The ideal network structures of CTF-1 or CTF-2 S9
XPS of CTF-1 and CTF-2 S10
Table S1. Peaks of CTF-1 in XPS survey spectrum S10
Fig. S6. C1s scan and N1s scan of CTF-1 S10
Table S2. Peaks of CTF-2 in XPS survey spectrum S11
Fig. S7. C1s scan and N1s scan of CTF-2 S11
Porosity of CTF-1 and CTF-2 S12
Fig. S8. Nitrogen sorption isotherm of CTF-1 and CTF-2. S12
Table S3. Porosity data of CTF-1 and CTF-2. S12
Band gap values calculated by DFT method S13
Fig. S9. Band gap values of the CTFs calculated by DFT method. S17
Fig. S10. Ultraviolet-visible diffuse reflectance spectroscopy of the S17
CTFs
Fig.S11. Images of CTF-1 (left) and CTF-2 (right) on water S18
Fig. S12. FTIR of CTF-2 (blue) and cyanuric chloride (black) S18
Charge Distribution Calculation S19
Fig. S13. Structure formula of M3 used in place of CTF-1: the charge S19
distribution of blue dotted rectangle was exhibited at Fig. S15, Fig. S16 and Table S4
Fig. S14. Structure formula of M4 used in place of CTF-2; the charge S19
distribution of blue dotted rectangle was exhibited at Fig. S17, Fig. S18 and Table S5Fig. S15. The local charge distribution of M3S20
Fig. S16. The local serial number of M3 S20
Table S4. The atom charge value of M3 S20
Fig. S17. The local charge distribution of M4 S21
Fig. S18. The local serial number of M4 S21
Table S5. The atom charge value of M4 S21
Fig. S19. FE-SEM and FE-TEM of both CTFs. S22

Table S6. The quantum yields of up-conversion fluorescence of CTF-1 andS22 CTF-2 excited at 800 nm
Reference S22

General

Unless otherwise noted, reagents and solvents were purchased from commercial sources and were used as received. Toluene and 1,4-dioxane were dried with activated molecular(4A molecular sieves, $3-5 \mathrm{~mm}$, pellets, activated under $400{ }^{\circ} \mathrm{C}$ in an oven for 4 h$) .{ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra were recorded on a Bruker Avance III HD 500 NMR spectrometer or on a 400 MHz . The Fourier-transformed infrared (FT-IR) spectra were obtained on a PerkinElmer Spectrum Two FT-IR spectrometer with Attenuated Total Reflection (ATR) technique. Ultraviolet-visible Diffuse Reflectance Spectra (UV-Vis DRS) were collected on a UV-2700 using absorption value of BaSO_{4} as baseline. TGA were carried on a SDT Q600 thermogravimetric analyzer, and the samples were heated to $1000^{\circ} \mathrm{C}$ with a rate of $10^{\circ} \mathrm{C} / \mathrm{min}$ under a nitrogen atmosphere. The FE-SEM were conducted on a Hitachi S-4800 field emission scanning electron microscope. The FE-TEM were conducted on a JEOL JEM-2100F. The PXRD were obtained on a Bruker AXS D8 ADVANCE X-ray diffractometer with a $\mathrm{Cu} \mathrm{K} \alpha$ ($\lambda=$ $1.5418 \AA \AA$) radiation source operated at 40 kV and 40 mA . Surface area, nitrogen adsorption isotherms (77 K) and pore size distributions were measured on a JWBK122W, the sample were degassed at $80{ }^{\circ} \mathrm{C}$ for 6 h under reduced pressure before analysis. ${ }^{13} \mathrm{C}$ cross polarization magic angle spinning nuclear magnetic resonance $\left({ }^{13} \mathrm{C}\right.$ CP/MAS NMR) spectra were recorded on a 700 MHz Bruker Avance NEO spectrometer. Mass spectra (ESI analysis) were recorded on an Esquire 6000 spectrometer (LC/MS). The photoemission spectra were recorded on a optical path system equipped with a femtosecond laser (Coherent ChamelonVision, 80 MHz) and a spectrometer (Horiba-IH530), and the background (silicon oxide, crystal orientation: 100, thickness of oxide layer: 200 nm , electrical resistivity $<0.0015 \Omega \cdot \mathrm{~cm}$) purchased from a commercial source. The powder was dispersed in dichloromethane (DCM) before coated on the background, then the DCM was evaporated in a cupboard provided with a draught. The photocatalytic experiments were performed under visible light irradiation ($>420 \mathrm{~nm}$) with a Xe 500 W lamp(Perfectlight). The temperature of the system was maintained at $25{ }^{\circ} \mathrm{C}$ by the flow cooling water. In the experiments, 50 mg of photocatalyst powder was dispersed in 100 mL aqueous solution contained 10 mL triethanolamine (TEOA) as a photogenerated hole scavenger. $1.5 \mathrm{mg}(3 \mathrm{wt} \%)$ of Pt was added as cocatalyst by in-situ photodeposition method using $\mathrm{H}_{2} \mathrm{PtCl}_{6}$. The mixture was bubbled with argon (carrier gas) from the bottom of the reactor to remove air thoroughly. The power density of the irradiation is $\sim 130 \mathrm{~mW} / \mathrm{cm}^{2}$ as measured by an irradiance meter. The hydrogen evolution was analyzed by gas chromatography (SHIMADZU, GC-2014) equipped with a thermal conductive detector(TCD).

Synthesis of 2,4,6-triphenyl-1,3,5-triazine (M1)

TriPh-triazine
To dry toluene (20 mL) in a three-necked flask was added a solution of phenyllithium in ethyl ether ($15 \mathrm{~mL}, 1.0 \mathrm{M}, 15.0 \mathrm{mmol}$) under nitrogen, and the resulting solution was then refluxed under nitrogen. After a solution of 2,4,6-trichloro-1,3,5-triazine (cyanuric chloride) $(940.8 \mathrm{mg}, 98 \%, 5.0 \mathrm{mmol})$ in dry dioxane $(10 \mathrm{~mL})$ was added slowly, the reaction mixture was continually refluxed for 22 h , and then cooled to room temperature, quenched by adding a saturated $\mathrm{NH}_{4} \mathrm{Cl}$ aqueous solution (100 mL), and extracted with EtOAc $(3 \times 50 \mathrm{~mL})$. The combined extras were washed with dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated. The residual crude was subjected to chromatography to afford M1 ($1.35 \mathrm{~g}, 87 \%$). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right), \delta 7.71$ (m, $6 \mathrm{H}), 7.55(\mathrm{~m}, 6 \mathrm{H}), 7.45(\mathrm{~m}, 3 \mathrm{H})$. HRMS $(\mathrm{m} / \mathrm{z})$ calcd. for $\mathrm{C}_{21} \mathrm{H}_{16} \mathrm{~N}_{3}[\mathrm{M}+\mathrm{H}]^{+} 310.1339$; found 310.1344 .

Fig. S1. HR-ESI-MS spectrum of 2,4,6-triphenyl-1,3,5-triazine (M1).

Fig. S2. ${ }^{1} \mathrm{H}$ NMR of M1

Synthesis of 1,4-bis(4,6-dichloro-1,3,5-triazine-2-yl)benzene (M2)

To dry toluene (30 mL) in a three-necked flask was added 1,4-dibromobenzene (241 $\mathrm{mg}, 98 \%, 1 \mathrm{mmol}$), and a solution of n-butyllithium in n-hexane $(0.8 \mathrm{~mL}, 2.5 \mathrm{M}, 2$ mmol) was added slowly at room temperature under nitrogen. The reaction mixture was cooled to $-10^{\circ} \mathrm{C}$. After a solution of $2,4,6$-trichloro-1,3,5-triazine ($3.76 \mathrm{~g}, 98 \%$, $20 \mathrm{mmol})$ in dry 1,4 -dioxane (20 mL) was added slowly, the reaction mixture was continually stirred for 1 h at $-10{ }^{\circ} \mathrm{C}$, then quenched by adding $\mathrm{H}_{2} \mathrm{O}(100 \mathrm{~mL})$, and extracted with EtOAc ($3 \times 30 \mathrm{~mL}$). The combined extracts were washed with dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO} 4$, and concentrated. The residual crude was subjected to chromatography to afford low-melting 1,4-bis(4,6-dichloro-1,3,5-triazine-2yl)benzene ($32 \mathrm{mg}, 9 \%$). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) , $\delta 7.36(\mathrm{~s}, 4 \mathrm{H})$. HRMS (m/z) calc. for $\mathrm{C}_{12} \mathrm{H}_{4} \mathrm{~N}_{6} \mathrm{Cl}_{4}[\mathrm{M}]^{+} 371.9246$; found 371.1016.

Fig. S3. HR-ESI-MS spectrum of M2.

Fig. S4. ${ }^{1} \mathrm{H}$ NMR of M2.

Synthesis of CTF-1

To solution of 1, 4-diiodobenzene ($2.69 \mathrm{~g}, 98 \%, 8.0 \mathrm{mmol}$) in dry toluene (50 mL) in a three-necked flask was added a solution of n-butylllithium in n-hexane $(7.0 \mathrm{~mL}, 2.5$ $\mathrm{M}, 17.5 \mathrm{mmol}$) under nitrogen (Caution: the standard operating procedure of $n-\mathrm{BuLi}$ should be strictly followed for operators' safety), and the resulting mixture was stirred as room temperature for 30 min , and then heated till refluxing. After a solution of 2,4,6-trichloro-1,3,5-triazine ($940 \mathrm{mg}, 98 \%, 5 \mathrm{mmol}$) in dry toluene (15 mL) was added dropwise, the reaction mixture was refluxed for 22 hours, cooled to room temperature, and quenched by adding $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$. The precipitate formed were harvested by filtration, followed by water scrubbing. The crude product was washed with toluene $(3 \times 30 \mathrm{~mL})$, dioxane $(3 \times 30 \mathrm{~mL})$, ethyl acetate $(5 \times 100 \mathrm{~mL})$, methanol $(5 \times 100 \mathrm{~mL})$ and water $(5 \times 200 \mathrm{~mL})$, and dried under reduced pressure $\left(110^{\circ} \mathrm{C}, 6 \mathrm{~h}\right)$ to afford CTF-1 (904 mg, 88.2%).

NOTICE: Model molecules (such as TriPh-triazine) and monomers are soluble in common organic solvents, and the as-synthesized products were washed by toluene, 1,4-dioxane, ethyl acetate, methanol and water to remove oligomers, leaving behind the polymers.

Synthesis of CTF-2

CTF-2 was prepared by following a procedure similar to the above one with using 4,4'-diiodobiphenyl ($3.31 \mathrm{~g}, 98 \%, 8.0 \mathrm{mmol}$) in yield of 96%.

Fig. S5. The ideal network structures of CTF-1 or CTF-2.

XPS of CTF-1 or CTF-2

Table S1. Peaks of CTF-1 in XPS survey spectrum.

CTF-1	Start BE	Peak	End	Height	FWHM	Area (P) CPS	Area (N)		
BE	BE	CPS	Atomic \%						
(eV)	Peak Type								
Cl2p	204.58	197.88	194.28	197.15	2.31	875.44	0	0.44	Standard
N1s	402.88	398.45	394.58	5721.47	2.25	14468.37	0.11	12.69	Standard
C1s	291.08	284.37	281.38	28958.81	1.65	61037.64	0.77	86.58	Standard
I3d	636.08	620.52	615.38	1479.14	1.62	7486.19	0	0.28	Standard

Fig. S6. C1s scan (left) and N1s (right) scan of CTF-1: the ratio of carbon (286.2 eV, triazine): carbon (284.3 eV, phenyl) $=1: 2.55$.

Table S2. Peaks of CTF-2 in XPS survey spectrum.

CTF-2	Start BE	Peak BE	End BE	Height CPS	FWHM (eV)	Area (P) CPS. (eV)	Area (N) TPP-2M	Atomic \%	Peak Type
Cl2p	205.18	197.22	193.98	161.39	0.33	664.7	0	0.24	Standard
N1s	403.58	398.29	394.68	4645.04	2.69	13046.28	0.1	8.04	Standard
C1s	290.38	284.27	281.28	47129.3	1.62	91717.69	1.16	91.44	Standard
I3d	636.18	620.45	613.48	1729.42	1.85	10429.53	0	0.28	Standard

Fig. S7. C1s scan (left) and N1s scan (right) of CTF-2: the ratio of carbon (286.2 eV , triazine) : carbon (284.3 eV, phenyl) $=1: 5.71$.

Porosity of CTF-1 or CTF-2

Fig. S8. Nitrogen sorption isotherm of CTF-1 (left) and CTF-2 (right).

Table S3. Porosity data of the CTFs

Sample	BET surface area $\left(\mathrm{m}^{2 / \mathrm{g}}\right)$	Langmuir surface area $\left(\mathrm{m}^{2} / \mathrm{g}\right)$	Pore diameter* (nm)	Pore Volume $\left(\mathrm{cm}^{3} / \mathrm{g}\right)$
CTF-1	41.03	185.64	23.93	0.231
CTF-2	99.40	451.16	15.61	0.368

* : BJH adsorption average pore width (4V/A).
**: BJH adsorption cumulative pore volume.

Band gap values calculated by DFT method

DMol3 package (Materials Studio 8.0) was used to optimized the geometric configurations and calculated band gap values of the CTFs.

DFT calculations under the local density approximation (LDA) and using the PWC functional in the Dmol3 code after geometry optimization.
Electronic parameters are listed below:
Spin polarization: restricted
Basis set: DNP
Functional: PWC
SCF density convergence: 1.0E-6
SCF charge mixing $2.0 \mathrm{E}-1$
Global orbital Cutoff: $3.7 \AA$
k-point set: fine (1x1x1)

CTF-1, Orientation standard: A along X, B in XY plane.

\$coordinates

C	18.12221035086192	10.46286302395696	0.00000000000000
C	-2.14115847371256	14.45941507653451	0.00000000000000
C	9.06338968329586	10.46286302395696	0.00000000000000
C	2.14115847371256	14.45941507653451	0.00000000000000
C	13.59280001707889	2.61769419908662	0.00000000000000
C	0.00000000000000	18.16801034093209	0.00000000000000
C	-4.52941033378303	13.08055722304359	0.00000000000000

C	15.73395849079145	9.08400517046604	0.00000000000000
C	4.52941033378303	13.08055722304359	0.00000000000000
C	11.45164154336633	9.08400517046604	0.00000000000000
C	0.00000000000000	20.92572604791393	0.00000000000000
C	13.59280001707889	5.37540990606847	0.00000000000000
C	20.40165954553990	9.14579228512763	0.00000000000000
H	20.33139607757273	7.08182750034632	0.00000000000000
C	9.06428180410221	13.09545930279883	0.00000000000000
H	10.88685947433472	14.06659174673589	0.00000000000000
C	11.31245870159456	1.30216865718436	0.00000000000000
H	9.56014449932922	2.39500099802862	0.00000000000000
C	-6.80885952846101	14.39762795998319	0.0000000000000
H	-6.73859606049384	16.46159274476451	0.00000000000000
C	4.52851821297668	10.44796094420172	0.00000000000000
H	2.70594054274417	9.47682850026466	0.00000000000000
C	2.28034131548433	22.24125158792647	0.00000000000000
H	4.03265551774967	21.14841924708221	0.00000000000000
C	-2.28034131548433	22.24125158792647	0.0000000000000
H	-4.03265551774967	21.14841924708221	0.00000000000000
C	6.80885952846101	14.39762795998319	0.00000000000000
H	6.73859606049384	16.46159274476451	0.00000000000000
C	-4.52851821297668	10.44796094420172	0.0000000000000
H	-2.70594054274417	9.47682850026466	0.00000000000000
C	15.87314133256322	1.30216865718436	0.00000000000000
H	17.62545553482856	2.39500099802862	0.00000000000000
C	6.78394048861788	9.14579228512763	0.00000000000000
H	6.85420395658505	7.08182750034632	0.00000000000000
C	18.12131823005557	13.09545930279883	0.00000000000000
H	16.29874055982306	14.06659174673589	0.00000000000000
N	-2.23293663612923	16.98480006614827	0.00000000000000
N	0.00000000000000	13.11724036170455	0.00000000000000
N	2.23293663612923	16.98480006614827	0.00000000000000
N	15.82573665320812	6.55862018085228	0.00000000000000
N	13.59280001707889	10.42617988529600	0.00000000000000
N	11.35986338094966	6.55862018085228	0.00000000000000
\$end			
DFT energy gap: valence band edge: conduction band edge:	ge: 0.099155 -0.248788 H edge: -0.149633 H	$\begin{array}{ll} \mathrm{Ha} & 2.698 \mathrm{eV} \\ \mathrm{a} & -6.770 \mathrm{eV} \\ & -4.072 \mathrm{eV} \end{array}$	

CTF-2, Orientation standard: A along X, B in XY plane.

\$coordinates

C
C
H
H
C
C
H
H
C
C
H
H
C
C
H
H
C
C
H
H
C
C
H
27.36833350231642
29.61856741582871
.23186756930539
14.54278683574784
27.29137307739859
11.19997646542643
13.54762248956621
17.08573828856199
18.37903838734243
18.03503415721923
20.39527027946609
5.34136384053068
2.73714447719750
6.42395907764212
1.71607692936576
22.42710212909267
21.11618286453994
24.45899323297163
22.11134720883184
18.57323141172579
17.27993131105562
17.62393554306855
15.26369941893197
30.31760585786738
32.92182522309028
29.23501062264566
-0.45303817531668
-0.47641271176223
-0.82199868989521
-0.93012806476662
-0.45303817531668
-0.47641271176223
-0.82199868989521
-0.93012806476662
-0.45303817531668
-0.47641271176223
-0.82199868989521
-0.93012806476662
-0.45303817531668
-0.47641271176223
-0.82199868989521
-0.93012806476662
-0.45303817531668
-0.47641271176223
-0.82199868989521
-0.93012806476662
-0.45303817531668
-0.47641271176223
-0.82199868989521

H
C
C
H
H
C
C
3.95349129422487
-2.22503329691763
33.94289276903230 -0.93012806476662
$30.31760585786738 \quad 0.45303817531668$
-2.21486086717172
32.92182522309028 0.47641271176223 0.82199868989521 0.93012806476662 0.45303817531668 0.47641271176223 0.82199868989521 0.93012806476662 0.45303817531668 0.47641271176223 0.82199868989521 0.93012806476662 0.45303817531668 0.47641271176223 0.82199868989521 0.93012806476662 0.45303817531668 0.47641271176223 0.82199868989521 0.93012806476662 0.45303817531668 0.47641271176223 0.82199868989521 0.93012806476662 0.00000000000000 0.00000000000000 0.00000000000000 0.00000000000000 0.00000000000000 0.00000000000000 0.00000000000000 0.00000000000000 0.00000000000000 0.00000000000000 0.00000000000000 0.00000000000000 0.00000000000000 0.00000000000000 0.00000000000000 0.00000000000000 0.00000000000000 0.00000000000000 0.00000000000000

N	18.35920141253369	10.59968987802828	0.00000000000000
N	22.81623009756413	10.59968987802828	0.00000000000000
N	0.00000000000000	21.19937975605657	0.00000000000000
N	2.22851434251522	25.05927982225949	0.00000000000000
N	-2.22851434251522	25.05927982225949	0.00000000000000
\$end			
DFT energy gap:	0.094089 Ha	2.560 eV	
valence band edge:	-0.226790 Ha	-6.171 eV	
conduction band edge:	-0.132700 Ha	-3.611 eV	

Fig. S9. Band gap values of the CTFs calculated by DFT method.

Fig. S10. Ultraviolet-visible diffuse reflectance spectroscopy of the CTFs.

Fig. S11. Images of CTF-1 (left) and CTF-2 (right) on water.

Fig. S12. FTIR of CTF-2 (blue) and cyanuric chloride (black).

Charge Distribution Calculation

The force field ${ }^{[1]}$ (MM2) was used to minimize the energy of the M3 and M4 to get their optimized configurations, subsequently, the charges was calculated by Extended Hückel method, and exhibited on the solvent accessible surface of each molecular.

Fig. S13. Structure formula of M3 used in place of CTF-1: the charge distribution of blue dotted rectangle was exhibited at Fig. S15, Fig. S16 and Table S4.

Fig. S14. Structure formula of M4 used in place of CTF-2; the charge distribution of blue dotted rectangle was exhibited at Fig. S17, Fig. S18 and Table S5.

Fig. S15. The local charge distribution of M3.

Fig. S16. The local serial number of M3.
Table S4. The atom charge value of M3.

Atom	Charge (Hückel)	Atom	Charge (Hückel)	Atom	Charge (Hückel)
C (1)	0.028544	$\mathbf{C}(7)$	$\mathbf{0 . 3 1 9 1 2 3}$	$\mathrm{N}(13)$	-0.31195
$\mathbf{C ~ (2) ~}$	$\mathbf{- 0 . 0 3 5 5 4}$	$\mathbf{C ~ (8)}$	$\mathbf{0 . 3 1 8 3 4 7}$	$\mathrm{~N}(14)$	-0.30825
$\mathbf{C ~ (3) ~}$	$\mathbf{- 0 . 0 3 5 8 1}$	$\mathrm{~N}(9)$	-0.3133	$\mathrm{C}(15)$	0.318086
$\mathrm{C}(4)$	0.029601	$\mathrm{C}(10)$	0.31931	$\mathrm{~N}(16)$	-0.31114
$\mathrm{C}(5)$	-0.03624	$\mathrm{~N}(11)$	-0.31382	$\mathrm{C}(17)$	0.319247

$\mathrm{C}(6)$	-0.03547	$\mathrm{C}(12)$	0.318508	$\mathrm{~N}(18)$	-0.31424

Fig. S17. The local charge distribution of M4.

Fig. S18. The local serial number of M4.
Table S5. The atom charge value of M4.

Atom	Charge (Hückel)	Atom	Charge (Hückel)	Atom	Charge (Hückel)
	0.318113		0.321438		-0.0417269
C (1)		C (9)		C (89)	
	0.318052		-0.31493		-0.036259
C (2)		N(10)		C (90)	
	-0.313728		0.317622		0.0516172
N(3)		C (11)		C (91)	
	0.318269		-0.312059		-0.0415724
C (4)		N(12)		C (92)	

$\mathrm{N}(5)$	-0.31534				
$\mathrm{C}(6)$	0.31941	$\mathrm{C}(85)$	0.0233751		-0.036578
$\mathrm{~N}(7)$	-0.317918	$\mathrm{C}(86)$	-0.0365876		
$\mathrm{C}(93)$					
$\mathrm{N}(8)$	-0.319842	$\mathrm{C}(87)$	$\mathbf{- 0 . 0 4 1 7 0 5 9}$	0.0234154	
		$\mathrm{C}(88)$	0.0518759	$\mathrm{C}(95)$	-0.0364851

Fig. S19. FE-SEM of CTF-1(A), CTF-2 (B); FE-TEM of CTF-1 (C, E) and CTF-2 (D, F).

Table S6. The quantum yields of up-conversion fluorescence of CTF-1 and CTF-2 excited at 800 nm

	Cursor1-2:	Cursor3-4:	Quantum	Abs	Peak	Peak	Peak
	$788.77-$	416.53					
	P09.34(nm)	Yield		Wavelength	Count	FWH CW	
CTF-1	170108693	4222		$\mathbf{0 . 0 0 0 2 9 9}$	0.077	799.06	49783.14
CTF-2	183772752	25933	$\mathbf{0 . 0 5 7 0 8 2}$	0.002	799.06	53819.17	4.00

Reference

[1] Lan, Z. A.; Fang, Y. X.; Zhang, Y. F. and Wang, X. C. Angew.Chem. Int. Ed., 2018, 57,470-474.
[2] N. L. Allinger, J. Am. Chem. Soc., 1977, 99 (25), 8127 - 8134.

