Supporting Information

High Absorption Shielding Material of Poly(phthalazinone etherketone)/Multiwall Carbon Nanotube Composite Films with Sandwich Configurations

Yunping Hu^a, Ping Tang^a, Longwei Li^a, Junyu Yang^b, Xigao Jian^a, Yuezhen Bin ^a*

^a Department of Polymer Science and Engineering, Faculty of Chemical, Environmental and Biological Science and Technology, Dalian University of Technology, No.2 Linggong Rd, Dalian, 116024, P. R. China

^b Department of Chemical Engineering, University of Pittsburgh, 4200 Fifth Avenue,

Pittsburgh, PA 15260, USA

*Corresponding author.

Tel: +86- 411- 84986093.

E-mail address: binyz@dlut.edu.cn (0000-0002-3188-721X)

Supplementary information:

Experimental Setup

Fig. S1 Digital pictures of experimental setup and the sample holder for testing of shielding property.

Fig. S2 TG traces of MWCNT, PPEK, and PPEK/MWCNT composites with different mass ratio of MWCNT.

MWCNT loading (wt%)	T _{max} ^a (°C)	Char residue (%) at 800 °C
0 (PPEK)	496.6	60.83
1	496.5	68.24
2	498.7	70.11
5	498.7	71.85
10	502.3	71.3
15	502.8	71.67
100% (MWCNT)	501.4	73.95

Table S1 Results of TG traces for PEK and PEK/CNF composites:

^a Temperature at which rate of mass loss is maximum

Fig. S3 The storage modulus of PPEK/MWCNT composites with different mass ratio of MWCNT.

Fig. S4 The SE of sample B with different *d* value in the frequency of 8.2–12.4 GHz, the annotations in the figure represent the *d* and the unit is millimeter.

Fig. S5 a-d) the SE, SE_A and SE_R of sample C in X-band with different *d* value: a) 0-22 mm, b) 0-2 mm, c) 3-10 mm and d) 10-22 mm; e-f) the T, A and R of sample C with different *d* value: e) 0-22mm, f) 0-2mm, g)3-10 mm and h) 10-22mm, the annotations in the figure represent the *d* and the unit is millimeter.

Fig. S6 a-c) the SE, SE_A and SE_R of sample D in X-band with different *d* value: a) 0-22 mm, b) 0-8 mm and c) 8-22 mm; d-f) the T, A and R of sample D with different *d* value: e) 0-22mm, f) 0-8mm and g) 8-22 mm, the annotations in the figure represent the *d* and the unit is millimeter.

Fig. S7 a-c) the SE, SE_A and SE_R of sample E in X-band with different *d* value: a) 0-22 mm, b) 0-8 mm and c) 8-22 mm; d-f) the T, A and R of sample E with different *d* value: e) 0-22mm, f) 0-8mm and g) 8-22 mm, the annotations in the figure represent the *d* and the unit is millimeter.

d	Frequency [GHz]					
[λ] Α Β	С	D	E			
0.56	-	>12.40	>12.40	>12.40	>12.40	
0.64	>12.40	>12.40	12.39	11.88	11.62	
0.88	10.45	10.32	9.96	9.65	9.46	

 $\label{eq:constraint} \textbf{Table S2} \ \textbf{The position of resonance peak of samples with sandwich structure}$

Fig. S8 Dependence of EMI SE on frequency of sandwiched samples at specific *d* values: a) 0.56 λ , i.e., 14mm, b)

 $0.64\lambda,$ i.e., 16mm and c) $0.88\lambda,$ i.e., 22mm.

Sample	Number of Shielding Layer	d (mm)	d (λ)
E	2	8	0.32
F	3	11,11	0.44, 0.44
G	3	0,0	0, 0

Table S3 List of sandwiched and triple-layered sample.

Notes:

- EMI electromagnetic interference
- SE shielding effectiveness
- SE_A absorption loss
- SE_R reflection loss
- T transmission coefficient
- A absorption coefficient
- R reflection coefficient
- d the thickness of wave-transmitting layer
- $\lambda \lambda$ is 25mm, the minimum wavelength of the X-band
- PPEK Poly(phthalazinone etherketone)
- MWCNT multiwall carbon nanotube
- WIPS water induced phase separation
- NMP N-methyl pyrrolidinone