A three-dimensional metal-organic framework for guest-free ultra-low dielectric material

Wen Xu,^{#b} ShanshanYu,^{#a} Hui Zhang,^{#a} and Haibao Duan^{*a,c}

^{*a.*} School of Environmental Science, Nanjing Xiaozhuang University, Nanjing, 211171,, P.R.China

^{b.} Department of Chemistry, Huangshan University, Huangshan 245041, P.R. China

^{c.} Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095-1569, United States

E-mail:

duanhaibao4660@163.com

1. Experimental

1.1. Chemicals and reagents

Thee reagents and solvents were purchased from commercial sources and used without further purification.

1.2. Physical measurements

Elemental analyses (C, H and N) were performed with an Elementar Vario EL III analytical instrument. IR spectra were recorded on a Bruker Vector 22 Fourier Transform Infrared Spectrometer (170SX) (KBr disc). Thermogravimetric (TG) experiment was performed with a TA2000/2960 thermogravimetric analyzer from 30 to 800°C at a warming rate of 10 K/min under a nitrogen atmosphere, and the polycrystalline samples were placed in an aluminum crucible. Powder X-ray diffraction (PXRD) data for the as-prepared was collected using Bruker D8 Advance powder diffractometer operating at 40 kV and 40 mA with Cu K radiation $\lambda = 1.5418$ Å at ambient temperature. Temperature and frequency dependent dielectric constant, ε' , and dielectric loss, tan(δ), measurements were carried out employing Concept 80 system (Novocontrol, Germany); the powdered pellet, with a thickness of ca. 0.48 mm, was coated by gold films on the opposite surfaces and sandwiched by the copper electrodes and the ac frequencies span from 100 Hz to 10^6 Hz.

X-ray crystallography. Selected crystals of **1** at room temperature were centered on an Oxford Diffraction Xcalibur diffractometer equipped with a Sapphire 3 CCD detector and a graphite monochromated Mo K α (λ = 0.71073 Å). The data collection routine, unit cell refinement, and data processing were carried out with the program CrysAlis.¹ Structures were solved by the direct method and refined by the full-matrix least-squares procedure on F² using SHELXL-97 program.² The non-Hydrogen atoms were anisotropically refined using the full-matrix least-squares method on F². The crystallographic details about data collection, structural refinement are summarized in Table S1.

References:

- 1. CrysAlis V1.171, Oxford Diffraction Ltd., Poland, 2004.
- 2. G. M. Sheldrick, *SHELXL-97*, Program for the Refinement of Crystal structure, University of Göttingen, Germany, 1997.

1.3. Preparations for 1

The synthesis procedure of compound **1** is in following described: First, the $Zn(NO_3)_2 \cdot 6H_2O$ (0.075 g) and 4,4'-biphenyldicarboxylic acid (0.120 g) were dissolved in 10ml DMF. The mixture were stirred for 1h, then 0.021 g dimethylamine hydrochloride was added and stirred another 1h. The mixture were sealed in Teflon-lined autoclave and heated to 100 °C for 72h. Colorless needle-shape crystals were obtained in solution. The crystal was washed with DMF and acetone and dried in air.

Figure S1 TG curves of compound **1**.

Figure S2 TG curves of compound 1' showing high thermal stability.

Figure S3 Temperature-dependent dielectric loss of $\mathbf{1}$ in the temperature range of $30-135^{\circ}$ C.

Figure S4 Powder X-ray diffraction patterns for sample of **1**', confirming the sample **1** is stable after removing DMF (Black lines: experimental patterns of **1**'; red lines:

simulated profiles of 1).

Figure S5 Temperature-dependent dielectric loss at 10^5 Hz of 1'

Complex	1
Molecular formula	$C_{60} H_{48} N_2 O_{16} Zn_3$
Space group	Pna21
Crystal system	orthorhombic
Tauran //	100/2)
гетр/к	100(2)
Wavelength (Å)	0.71073
a/Å	24.7046(12)
b/Å	14.5230(9)
c/Å	22.3879(12)
α/°	90
β/°	90
γ/°	90
V/ų. Z	8032.4(8)
µ/mm⁻¹	0.939
ρ/g cm⁻³	1.033
F000	2560
Index ranges	-29 ≤ h ≤29
	-17 < k < 13
	1, 2 N 2 19
	-26 ≤ l ≤ 22
R ₁	0.0540
wR ₂	0.0764
-	

Table S1 Crystal and structural refinement data for compound 1

Table S2 Comparison of reported low-k MOFs (f≤0.1MHz) (ref 17a)			
MOF	k	Ref.	
{(Zn(MeIM) ₂) ^{[a}](ZIF-8)	≈2.4	[17a]	
$\{[Sr_2(1,3-bdc)_2(H_2O)_2] \bullet H_2O\}_n^{[b]}$	≈2.4	[15c]	
{[Pb(Tab)2(4,4'-bipy)] (PF6)2 •2MeCN} ^[c]	≈2.5	[16d]	
${[Zn_2(L-trp)_2(bpe)_2(H_2O)_2] \bullet 2H_2O \bullet 2NO_3}_n^{[d]}$	≈2.5	[16a]	
${Mn_2(D-cam)_2(2-Hpao)_4}_n^{[e]}$	≈2.8	[16e]	
${[Co_2(D-cam)_2-(3-abpt)_2(H_2O)_3]n\bullet 5n\bullet H_2O}^{[e]}$	≈3.0	[16e]	
{ $[Pb(Tab)_2]_2(PF_6)_4$] •2MeCN•DMF} ^[c]	≈3.0	[16d]	
$\{[Ni_2(bbim)(H_2bbim)_4] \bullet 2CH_3COO \bullet CH_3CN\}_2^{[f]}$	≈4.8	[16b]	
[Sr(µ-BDC)] _n ^[g]	≈4.9	[17b]	
$\{[(C_3H_7)_2NH2][Cr_7NiF_8(O_2C_4H_5)16]-MMA\}$	≈5.0	[17c]	
[Zn(TMPT ₎₂] ^{n[h]}	≈6.0	[17d]	
[Cu ₂ (EBTC)] _n ^[i]	≈6.2	[17e]	
[a] MelM=2-methylimidazolate			
[b] 1,3-bdc=benzene-1,3-dicarboxylicacid			
[c] Tab=4-(trimethylammonio) benzenethiolate	4,4-bipy=4,4-	bipyridine	
[d] L-trp= L-tryptophan	bpe=1,2-bis(4-pyridyl)ethylene		
[e] D-cam= D(+)-camphoric acid 2-Hpao=2-pyridinealdoxime			
3-abpt=4-amino-3,5-bis(3- pyridyl)-1,2,4-triazole			
[f] H2bbim=bisbenzimidazole [g] BDC= benzene-1,4-dicarboxylate			
[h] TMPT=5-(4-[(1H-1,2,4-triazol-1-yl)methyl]phenyl)-2H-tetrazole			
[i] EBTC=1,1'-ethynebenzene-3,3',5,5'-tet-racarboxylate			