Electronic Supplementary Information for

"Global ab initio exploration of potential energy surfaces for radical generation in the initial stage of benzene oxidation"

Hai-Bei Li*, Qingqing Jia

School of Ocean, Shandong University, Weihai 264209, People's Republic of China

Figure S1. The potential energy surfaces (red for triplet and black for singlet) for benzene activation at UB3LYP/cc-pVTZ level. The data in parenthesis are Gibbs free energies calculated at 1000.0K. Energy values (in kJ/mol) are relative to triplet molecular oxygen plus benzene. The MESX points are shown with blue X. The corresponding structures are illustrated in Figure 1 of context.

Figure S2. The potential energy surfaces for the oxidation of intermediate **3** by triplet molecular oxygen at UB3LYP/cc-pVTZ level. The data in parenthesis are Gibbs free energies calculated at 1000.0K. Energy values (in kJ/mol) are relative to triplet molecular oxygen plus intermediate **3**.

Figure S3. The potential energy surfaces for the oxidation of intermediate **4** by triplet molecular oxygen at UB3LYP/cc-pVTZ level. The data in parenthesis are Gibbs free energies calculated at 1000.0K. Energy values (in kJ/mol) are relative to triplet molecular oxygen plus intermediate **4**.

Figure S4. The potential energy surfaces for the oxidation of intermediate **6** by triplet molecular oxygen at UB3LYP/cc-pVTZ level. The data in parenthesis are Gibbs free energies calculated at 1000.0K. Energy values (in kJ/mol) are relative to triplet molecular oxygen plus intermediate **6**.

Figure S5. The reaction path followed by the intrinsic reaction coordinate for $TS2/3 + O_2$.

Figure S1. The potential energy surfaces (red for triplet and black for singlet) for benzene activation at UB3LYP/cc-pVTZ level. The data in parenthesis are Gibbs free energies calculated at 1000.0K. Energy values (in kJ/mol) are relative to triplet molecular oxygen plus benzene. The MESX points are shown with blue X. The corresponding structures are illustrated in Figure 1 of context.

Figure S2. The potential energy surfaces for the oxidation of intermediate **3** by triplet molecular oxygen at UB3LYP/cc-pVTZ level. The data in parenthesis are Gibbs free energies calculated at 1000.0K. Energy values (in kJ/mol) are relative to triplet molecular oxygen plus intermediate **3**.

Figure S3. The potential energy surfaces for the oxidation of intermediate **4** by triplet molecular oxygen at UB3LYP/cc-pVTZ level. The data in parenthesis are Gibbs free energies calculated at 1000.0K. Energy values (in kJ/mol) are relative to triplet molecular oxygen plus intermediate **4**.

Figure S4. The potential energy surfaces for the oxidation of intermediate **6** by triplet molecular oxygen at UB3LYP/cc-pVTZ level. The data in parenthesis are Gibbs free energies calculated at 1000.0K. Energy values (in kJ/mol) are relative to triplet molecular oxygen plus intermediate **6**.

Figure S5. The reaction path followed by the intrinsic reaction coordinate for $TS2/3 + O_2$.