Supporting Information

Perovskite lattice oxygen contributes to low-temperature catalysis for exhaust gas cleaning

Takuma Higo^{a*}, Kohei Ueno^a, Yuki Omori^a, Hiroto Tsuchiya^a, Shuhei Ogo^a, Satoshi Hirose^b, Hitoshi Mikami^b, Yasushi Sekine^a

^aDepartment of Applied Chemistry, Waseda University,
3-4-1, Okubo, Shinjuku, Tokyo 169-8555 Japan
^bHonda R&D, 4630, Shimo-Takanezawa, Tochigi 321-3393 Japan

Table S1. NO conversion on Pd/La_{0.9}Ba_{0.1}AlO_{3- δ}, Pd/Ba/LaAlO₃, Pd/LaAlO₃ and Pd/Al₂O₃. Reaction conditions: total flow rate = 200 mL min⁻¹, NO 1000 ppm, C₃H₆ 500 ppm, O₂ 2000 ppm, H₂O 7vol%.

Catalyst	473 K	523 K	573 K	623 K	673 K
Pd/Al_2O_3	0.5	7.4	31.7	54.2	50.6
Pd/LaAlO ₃	0.6	6.1	18.1	40.1	50.6
Pd/Ba/LaAlO ₃	0.4	12.3	28.3	43.2	52.6
$Pd/La_{0.9}Ba_{0.1}AlO_{3\text{-}\delta}$	4.4	34.9	42.3	48.1	48.5

Table S2. BET specific surface area of Pd/Al₂O₃, Pd/LaAlO₃, Pd/Ba/LaAlO₃ and Pd/La_{0.9}Ba_{0.1}AlO_{3- δ} catalysts.

Catalysts	BET specific surface area $/ m^2 g^{-1}$	Mean particle diameter / nm	Turnover frequency $/ 10^{-2} \text{ s}^{-1}$
Pd/Al ₂ O ₃	190.1	2.5	5 1.0
Pd/LaAlO ₃	4.8	4.7	1.0
Pd/Ba/LaAlO ₃	5.2	4.4	2.6
Pd/La _{0.9} Ba _{0.1} AlO ₃₋	δ 14.5	3.7	6.0

Table S3. NO conversion on Pd/La_{0.9}Ba_{0.1}AlO_{3- δ}, Pd/Ba/LaAlO₃, Pd/LaAlO₃ and Pd/Al₂O₃. Reaction conditions: total flow rate = 200 mL min⁻¹, NO 2250 ppm, C₃H₆ 250 ppm.

Catalyst	473 K	523 K	573 K	623 K	673 K
Pd/Al ₂ O ₃	3.0	23.9	76.0	89.2	90.1
Pd/LaAlO ₃	4.8	29.5	74.7	90.2	93.2
Pd/Ba/LaAlO ₃	0.9	44.3	77.7	89.7	90.8
$Pd/La_{0.9}Ba_{0.1}AlO_{3-\delta}$	0.8	46.5	74.2	86.2	87.9

Catalyst	473 K	523 K	573 K	623 K	673 K
Pd/Al ₂ O ₃	8.1	15.3	32.4	47.9	55.1
Pd/LaAlO ₃	1.9	8.6	22.6	48.4	50.0
Pd/Ba/LaAlO ₃	3.1	23.6	37.3	49.9	58.4
$Pd/La_{0.9}Ba_{0.1}AlO_{3-\delta}$	12.6	40.4	55.1	56.3	60.8

Table S4. NO conversion on Pd/La_{0.9}Ba_{0.1}AlO_{3- δ}, Pd/Ba/LaAlO₃, Pd/LaAlO₃ and Pd/Al₂O₃. Reaction conditions: total flow rate = 200 mL min⁻¹, NO 1000 ppm, C₃H₆ 500 ppm, O₂ 2000 ppm.

Table S5. The amount of carbon dioxide species detected during transient response tests.

	$C^{16}O_2$ / µmol	$C^{16}O^{18}O \ / \ \mu mol$	$C^{18}O_2 \ / \ \mu mol$
Pd/Ba/LaAlO ₃	6.5	30.0	84.6

Table S6. Binding energy and surface atomic ratio of O1s region of XPS spectra for Pd/Ba/LaAlO₃.

	_	Binding energy / eV							
Catalyst	Spectrum	OI	O _{II}	O _{III}	O _{IV}	O _I /La	O _{II} /La	O _{III} /La	O _{IV} /La
Pd/Ba/LaAlO ₃	(d)	529.4	530.4	531.4	533.1	3.3	0.5	2.2	0.3
	(e)	529.3	530.4	531.5	533.4	2.7	1.0	2.2	0.3
	(f)	529.1	530.5	531.2	533.7	3.1	0.5	2.3	0.1

Figure S1. C_3H_6 conversion over Pd/La_{0.9}Ba_{0.1}AlO_{3- δ}, Pd/Ba/LaAlO₃, Pd/LaAlO₃ and Pd/Al₂O₃. Reaction conditions: total flow rate = 200 mL min⁻¹, NO 1000 ppm, C₃H₆ 500 ppm, O₂ 2000 ppm, H₂O 7vol%.

Figure S2. Distribution of Pd particle size on a) Pd/Al₂O₃, b) Pd/La_{0.9}Ba_{0.1}AlO_{3-δ}, c) Pd/Ba/LaAlO₃ and d) Pd/LaAlO₃ catalysts.

Figure S3. NO conversion over Pd/La_{1-x}Ba_xAlO_{3- δ} (x=0, 0.03, 0.05, 0.1, 0.2) catalysts.

Figure S4. XRD patterns of (a) LaAlO₃, (b) $La_{0.97}Ba_{0.03}AlO_{3-\delta}$, (c) $La_{0.95}Ba_{0.05}AlO_{3-\delta}$, (d) $La_{0.9}Ba_{0.1}AlO_{3-\delta}$ and (e) $La_{0.8}Ba_{0.2}AlO_{3-\delta}$.

Figure S5. Lattice constant for $La_{1,x}Ba_xAlO_{3-\delta}$ and $Ba/LaAlO_3$. For all Ba-substituted LaAlO₃ perovskites, main diffraction peaks were derived from LaAlO₃. Although these supports maintained the perovskite structure, impurity phases were observed on $Pd/La_{0.8}Ba_{0.2}AlO_{3-\delta}$, which showed low catalytic activity. Figure S5† shows the lattice constants for $La_{1-x}Ba_xAlO_{3-\delta}$ (x=0, 0.03, 0.05, 0.1 and 0.2) and Ba/LaAlO₃. Because the ionic radius of Ba is larger than that of La cation, the lattice constant of Ba substituted LaAlO₃ was distorted. As shown in Figure S5†, the lattice constant of $La_{1-x}Ba_xAlO_{3-\delta}$ catalysts monotonically increased as the increasing of Ba amount. From this result, it is inferred that Ba is substituted to a large extent into LaAlO₃ without deposition on the surface up to 10 % doping of Ba.

Figure S6. IR spectra of surface species on Pd/Ba/LaAlO₃ during NO-C₃H₆-O₂-H₂O reaction at 473-623 K.

Figure S7. IR spectra of surface species on Pd/Al_2O_3 during NO-C₃H₆-O₂-H₂O reaction at 473-623 K.

Figure S8. IR spectra of surface species on Pd/LaAlO₃ during NO-C₃H₆-O₂-H₂O reaction at 473 K-623 K.

Figure S9. Dependence of the reaction rate on the partial pressure of NO on $Pd/La_{0.9}Ba_{0.1}AlO_{3-\delta}$ and $Pd/Ba/LaAlO_3$ at 523 K during NO-C₃H₆-O₂-H₂O reaction.

Figure S10. Dependence of the reaction rate on the partial pressure of C_3H_6 on Pd/LaAlO₃ at 523 K during NO- C_3H_6 - O_2 - H_2O reaction.

Figure S11. Transient response curves for typical products on Pd/Ba/LaAlO₃ following $Ar \rightarrow C_3H_6 + {}^{18}O_2$ switch at 523 K.

Figure S12. XPS spectra of O1s for Pd/Ba/LaAlO₃ (d) after exposure in C_3H_6 flow, (e) after exposure in O₂ and (f) after exposure of C_3H_6 flow again.

Figure S13. DRIFT spectra of Pd/La_{0.9}Ba_{0.1}AlO_{3- δ} and Pd/Ba/LaAlO₃ during second operation of transient test (switching from C₃H₆ to O₂ flow).