Supplementary information

Negative threshold voltage shift in an a-IGZO thin film transistor under X-ray irradiation

Dong-Gyu Kim^a, Jong-Un Kim^a, Jun-Sun Lee^a, Kwon-Shik Park^b, Youn-Gyoung Chang^b, Myeong-Ho Kim^{a*} and Duck-Kyun Choi^{a*}

^a Division of Materials Science and Engineering, Hanyang University, 222, Wangsimni-ro, Seongdong-gu, Seoul, Republic of Korea

^bResearch and Development Center, LG Display Co., Ltd., 30, Magokjungang 10-ro, Gangseo-gu, Seoul, Republic of Korea.

Figures S1 (a) and (b) show the XPS spectra of the O1s chemical state before and after X-ray irradiation of an a-IGZO film, respectively. These spectra were deconvoluted through a Gaussian fit. The binding energy peaks reveal fully oxidized oxygen (M-O) at 529.7 ± 0.1 eV, an oxygen vacancy (V_O) at 530.7 ± 0.1 eV, and oxygen in the hydroxide state (M-OH) at 531.7 ± 0.1 eV. The peaks related to oxygen vacancy did not change significantly before and after X-ray irradiation, the percentage oxygen vacancies being 25.8% and 26.1% before and after X-ray irradiation, respectively. These results suggest that the cause of increased electron concentration during X-ray irradiation of a-IGZO film is not strongly related to the formation of oxygen vacancies. We estimated these results are attributed to the high permeability of X-ray irradiation with high photon energy.

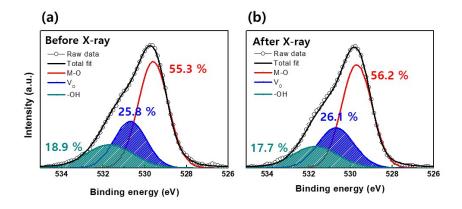


Figure S1. X-ray photoelectron spectroscopy (XPS) spectra of the O1s chemical state for the In-Ga-Zn-O (a-IGZO) film (a) before and (b) after X-ray irradiation. The binding energy states are related to fully oxidized oxygen (529.7 \pm 0.1 eV), oxygen vacancy (530.7 \pm 0.1 eV), and hydroxide (531.7 \pm 0.1 eV), with the three binding states deconvoluted by Gaussian fits.