## CuFeO<sub>2</sub>-NiFe<sub>2</sub>O<sub>4</sub> hybrid electrode for lithium-ion batteries with ultra-stable electrochemical performance

Jun Young Cheong <sup>a</sup>, Seokwon Lee <sup>b</sup>, Jiyoung Lee <sup>a</sup>, Haeseong Lim<sup>a</sup>, Su-Ho Cho <sup>a</sup>, Doh C. Lee <sup>b</sup> and Il-Doo Kim \*<sup>a</sup>

<sup>a</sup> Department of Materials Science & Engineering, Korea Advanced Institute of Science & Technology, 335 Science Road, Daejeon, 305-701, Republic of Korea

<sup>b</sup> Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science & Technology, 335 Science Road, Daejeon, 305-701, Republic of Korea

\*Email address: idkim@kaist.ac.kr (I. D. Kim)



Fig. S1. SEM-EDS analysis of (a) CFO and (b) CFO-Ni (0.4).



Fig. S2. XPS spectrum for (a) Cu, (b) Fe, and (c) Ni for CFO-Ni (0.4).



Fig. S3. Charge and discharge profile of CFO in the formation cycle.



Fig. S4. Charge and discharge profile of CFO in the 2nd, 10th, 50th, and 100th cycle.



Fig. S5. Ex situ XRD patterns of (a) CFO and (b) CFO-Ni (0.4) after cycling.

| Sample                       | Capacity<br>(mAh g <sup>-1</sup> ) | Current Density<br>(mA g <sup>-1</sup> ) | Cycles | References |
|------------------------------|------------------------------------|------------------------------------------|--------|------------|
| CuFeO <sub>2</sub> @rGO      | 587                                | 200                                      | 100    | [1]        |
| CuFeO <sub>2</sub> /graphene | 670                                | 141.6                                    | 100    | [2]        |
| CuFeO <sub>2</sub> (650 °C)  | 475                                | 354                                      | 100    | [3]        |
| CFO-Ni (0.4)                 | 147                                | 5000                                     | 800    | This Work  |
| CFO-Ni (0.4)                 | 500                                | 500                                      | 100    | This Work  |

**Table S1.** Comparison of electrochemical performance for  $Co_3O_4$  NPs by fast formation cycling with previously reported  $Co_3O_4$ -based electrodes.

## References

[1] J. Wang, Q. Deng, M. Li, K. Jiang, J. Zhang, Z. Hu, J. Chu, Copper ferrites@reduced graphene oxide anode materials for advanced lithium storage applications, Sci. Rep. 7 (2017) 8903.

[2] Y. Dong, C. Cao, Y.-S. Chui, J.A. Zapien, Facile hydrothermal synthesis of CuFeO<sub>2</sub> hexagonal platelets/rings and graphene composites as anode materials for lithium ion batteries, Chem. Commun. 50 (2014) 10151-10154.

[3] L. Lu, J.-Z. Wang, X.-B. Zhu, X.-W. Gao, H.-K. Liu, High capacity and high rate capability of nanostructured CuFeO<sub>2</sub> anode materials for lithium-ion batteries, J. Power Sources 196 (2011) 7025-7029.