Supplementary materials

Cerium(III) complexes with azolyl-substituted thiophenolate ligands: synthesis, structure and red luminescence

Vasily A. Ilichev,*¹ Liubov I. Silantyeva, ¹ Ivan D. Grishin,² Anton V. Rozhkov,³ Roman V. Rumyantcev,¹ Georgy K. Fukin¹ and Mikhail N. Bochkarev¹

¹ G. A. Razuvaev Institute of Organometallic Chemistry of Russian Academy of Sciences, Tropinina st. 49, 603950 Nizhny Novgorod, Russian Federation

² Nizhny Novgorod State University, Gagarina avenue 23/2, 603950 Nizhny Novgorod, Russian Federation

³ Saint Petersburg State University, Universitetskaya Emb. 7/9, 199034 St Petersburg, Russian Federation

*Corresponding author. E-mail: <u>ilichev@iomc.ras.ru</u> (V.A.I.)

Table 1S. Details of crystallographic, collection and refinement data for Ce(SSN)₃(DME), Ce(NSN)₃(DME), La(OSN)₃(DME).

Complex	Ce(SSN) ₃ (DME)	Ce(NSN) ₃ (DME)	La(OSN) ₃ (DME)				
Empirical formula	C45H39CeN3O3S6	C48H49.50CeN6O4.50S3	C43H34LaN3O2S3				
Formula weight	1002.27	1018.73	907.82				
Temperature [K]	100(2)	100(2)	100(2)				
Crystal system	Orthorhombic	Monoclinic	Triclinic				
Space group	Pbca	I2/a	P-1				
Unit cell dimensions							
a[Å]	15.0364(5)	21.5274(3)	11.2387(13)				
b[Å]	21.7390(8)	12.4640(2)	12.7989(13)				
c[Å]	25.9182(9)	39.1836(5)	13.7827(12)				
α[°]	90	90	88.854(8)				
β[°]	90	95.4840(10)	81.032(8)				
γ[°]	90	90	72.201(10)				
Volume [Å ³]	8472.0(5)	10465.5(3)	1863.8(3)				
Z	8	8	2				
Calculated density [Mg/m ³]	1.572	1.293	1.618				
Absorption coefficient [mm	¹ 1 415	1 025	1 266				
1]	1.413	1.035	1.500				
F(000)	4064	4172	916				
Crystal size [mm ³]	0.35×0.15×0.13	0.43×0.27×0.18	0.15×0.10×0.03				
θ [°]	1.874 - 27.869	3.081 - 28.306	3.110 - 25.115				
Reflections collected / unique	e81561 / 10099	55315 / 12956	25645 / 6601				
R(int)	0.0671	0.0467	0.1158				
Final R indices [1>2sigma(1)]	$R_1 = 0.0374$,	R ₁ =0.0577,	R ₁ =0.0515,				
That K indices [1-25igina(1)]	$WR_2 = 0.0851$	wR ₂ =0.1658	wR ₂ =0.0969				
D indiana (all data)	$R_1 = 0.0549$,	$R_1 = 0.0770,$	R ₁ =0.0909,				
R mulees (an data)	wR ₂ =0.0939	wR ₂ =0.1826	$wR_2 = 0.1104$				
S	1.081	1.030	1.019				
Largest diff. peak and hole $[e/Å^3]$	e1.563/-0.575	1.886/-1.645	1.095/-0.859				

Ce(INSIN)3(DIVIE) and La(OSIN)3(DIVIE) complexes.								
Bond	Ce(SSN)3(DME), Å	Bond	Ce(NSN) ₃ (DME), Å	Bond	La(OSN)3(DME), Å			
Ce(1)-S(1)	2.8588(8)	Ce(1)-S(1)	2.8792(12)	La(1)-S(1)	2.8679(18)			
Ce(1)-S(3)	2.8839(8)	Ce(1)-S(2)	2.8874(12)	La(1)-S(2)	2.8666(17)			
Ce(1)-S(5)	2.8714(8)	Ce(1)-S(3)	2.9330(11)	La(1)-S(3)	2.8598(15)			
Ce(1)-N(1)	2.891(3)	Ce(1)-N(1)	2.729(4)	La(1)-N(1)	2.739(5)			
Ce(1)-N(2)	2.620(2)	Ce(1)-N(3)	2.549(4)	La(1)-N(2)	2.663(5)			
Ce(1)-N(3)	2.699(2)	Ce(1)-N(5)	2.643(3)	La(1)-N(3)	2.713(5)			
Ce(1)-O(1)	2.568(2)	Ce(1)-O(1)	2.577(3)	La(1)-O(4)	2.630(4)			
Ce(1)-O(2)	2.661(2)	Ce(1)-O(2)	2.649(3)	La(1)-O(5)	2.655(4)			
Angle	Ce(SSN) ₃ (DME), °	Angle	Ce(NSN) ₃ (DME), °	Angle	La(OSN) ₃ (DME), °			
N(1)-Ce(1)- S(1)	70.64(5)	N(1)-Ce(1)- S(1)	70.59(9)	N(1)-La(1)- S(1)	68.56(11)			
N(2)-Ce(1)- S(3)	71.15(6)	N(3)-Ce(1)- S(2)	73.85(9)	N(2)-La(1)- S(2)	70.03(11)			
N(3)-Ce(1)- S(5)	71.64(6)	N(5)-Ce(1)- S(3)	71.69(8)	N(3)-La(1)- S(3)	69.66(11)			

Table 2S. The selected bond lengths (Å) and angles (°) in the Ce(SSN)₃(DME), Ce(NSN)₃(DME) and La(OSN)₃(DME) complexes.

Figure 1Sa. MALDI mass spectra of complexes of Ce(OSN)₃(DME), Ce(SSN)₃(DME), La(OSN)₃(DME) recorded in positive mode.

Figure 1Sb. MALDI mass spectra of complexes of Ce(OSN)₃(DME), Ce(SSN)₃(DME), La(OSN)₃(DME) recorded in negative mode.

Figure 2S. PL spectrum of La(OSN)₃(DME) in solid state. Excitation – 405 nm laser diode.

Figure 3S. IR spectra of (H)OSN, (H)SSN, La(OSN)3DME, Ce(OSN)3DME and Ce(SSN)3DME