Supporting Information

Catalyst-free four-component domino synthetic approach toward versatile multicyclic spirooxindole pyran scaffolds

Aref Mohammadi, Mohammad Bayat*, Shima Nasri

Department of Chemistry, Imam Khomeini International University, Qazvin, Iran. bayat mo@yahoo.com

The Table of Contents

Title	Page
Title, author's name, address and table of contents	1
General remarks and FIGURE 1.	2
¹ H and ¹³ C NMR and IR and Mass spectra of 5a	3-6
¹ H and ¹³ C NMR spectra of 5b	7-8
¹ H and ¹³ C NMR spectra of 5 c	9-10
¹ H and ¹³ C NMR and IR and Mass spectra of 5d	11-14
¹ H and ¹³ C NMR and Mass spectra of 5 e	15-17
¹ H and ¹³ C NMR and Mass spectra of 5 f	18-20
¹ H and ¹³ C NMR spectra of 5 g	21-22
¹ H and ¹³ C NMR spectra of 5h	23-24
¹ H and ¹³ C NMR and IR spectra of 5 i	25-27
¹ H and ¹³ C NMR and IR and Mass spectra of 5 j	28-31
¹ H and ¹³ C NMR and IR and Mass spectra of 5 k	32-35
¹ H and ¹³ C NMR spectra of 5 I	36-37
¹ H and ¹³ C NMR spectra of 5m	38-39
¹ H and ¹³ C NMR spectra of 5n	40-41
¹ H and ¹³ C NMR spectra of 50	42-43
¹ H NMR and IR spectra of 5 p	44-45
¹ H and ¹³ C NMR spectra of 5 q	46-47

Experimental Section

General remarks:

The nitroketene dithioacetals, isatin derivatives, various amines, various active methylene compounds and solvents were obtained from Sigma Aldrich and Fluka Co. which used without further purification. IR spectra: Bruker Tensor 27 spectrometer. NMR spectra: Bruker DRX-300 Avance instrument (300 MHz for ¹H and 75.4 MHz for ¹³C) with DMSO- d_6 as solvents. Chemical shifts are expressed in parts per million (ppm), and coupling constant (*J*) are reported in hertz (Hz). Mass spectra: Agilent 5975C VL MSD with Triple-Axis detector operating at an ionization potential of 70 eV. Elemental analyses for C, H and N: Heraeus CHNO-Rapid analyzer. Melting points: electrothermal 9100 apparatus.

¹H NMR of 5a

¹³C NMR of 5a

IR of 5a

Mass of 5a

¹³C NMR of 5b

¹H NMR of 5c

¹³C NMR of 5d

IR of 5d

Mass of 5d

¹³C NMR of 5e

Mass of 5e

¹H NMR of 5f

¹³C NMR of 5f

Mass of 5f

¹H NMR of 5g

¹³C NMR of 5g

¹³C NMR of 5h

¹H NMR of 5i

¹³C NMR of 5i

IR of 5i

¹H NMR of 5j

¹³C NMR of 5j

IR of 5j

Mass of 5j

¹H NMR of 5k

¹³C NMR of 5k

IR of 5k

Mass of 5k

¹H NMR of 5l

¹³C NMR of 5l

¹H NMR of 5m

¹³C NMR of 5m 39

¹H NMR of 5n

¹³C NMR of 5n

¹H NMR of 5p

IR of 5p

¹H NMR of 5q

¹³C NMR of 5q