Supporting Information

Catalyst-free four-component domino synthetic approach toward versatile multicyclic spirooxindole pyran scaffolds

Aref Mohammadi, Mohammad Bayat*, Shima Nasri
Department of Chemistry, Imam Khomeini International University, Qazvin, Iran.
bayat_mo@yahoo.com

The Table of Contents

Title	Page
Title, author's name, address and table of contents	1
General remarks and FIGURE 1.	2
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR and IR and Mass spectra of 5a	$3-6$
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of 5b	$7-8$
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of 5c	$9-10$
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR and IR and Mass spectra of 5d	$11-14$
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR and Mass spectra of $\mathbf{5 e}$	$15-17$
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR and Mass spectra of 5f	$18-20$
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{5 g}$	$21-22$
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{5 h}$	$23-24$
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR and IR spectra of 5i	$25-27$
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR and IR and Mass spectra of $\mathbf{5 j}$	$28-31$
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR and IR and Mass spectra of 5k	$32-35$
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{5 l}$	$36-37$
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{5 m}$	$38-39$
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of 5n	$40-41$
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{5 0}$	$42-43$
${ }^{1} \mathrm{H}$ NMR and IR spectra of 5p	$44-45$
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{5 q}$	$46-47$

Experimental Section

General remarks:

The nitroketene dithioacetals, isatin derivatives, various amines, various active methylene compounds and solvents were obtained from Sigma Aldrich and Fluka Co. which used without further purification. IR spectra: Bruker Tensor 27 spectrometer. NMR spectra: Bruker DRX-300 Avance instrument (300 MHz for ${ }^{1} \mathrm{H}$ and 75.4 MHz for ${ }^{13} \mathrm{C}$) with DMSO- d_{6} as solvents. Chemical shifts are expressed in parts per million (ppm), and coupling constant (J) are reported in hertz (Hz). Mass spectra: Agilent 5975C VL MSD with Triple-Axis detector operating at an ionization potential of 70 eV . Elemental analyses for C, H and N: Heraeus CHNO-Rapid analyzer. Melting points: electrothermal 9100 apparatus.

5g

5h

$5 i$

5j

5k

51

5m

$5 n$

FIGURE 1. Structure of all products 5a-q.

Current Data Parameters	
NAME	AA.Mohamadi
EXPNO	52
PROCNO	O
F2 - Acquisition Parameters	
Date	20170120
Time	12.25
INSTRUM	M spect
PROBHD	D $5 \mathrm{~mm} \mathrm{BBO} \mathrm{BB-1H}$
PULPROG	Of $\quad \mathrm{zg}$
	16384
SOLVENT	NT DMSO
NS	6
DS	0
SWH	5995.204 Hz
FIDRES	0.365918 Hz
AQ	1.3664756 sec
RG	256
DW	83.400 usec
DE	6.00 usec
TE	300.0 K
D1 6.0	6.00000000 sec
	CHANNEL
NUCI	1H
P1	9.00 usec
PL1	3.00 dB
SFO1 29	299.8729987 MHz
F2 - Processing parameters	
SI 32768	
SF 299	299.8700035 MHz
WDW EM	
SSB	0
LB	0.30 Hz
GB	0
PC	1.00

${ }^{1} \mathbf{H}$ NMR of $\mathbf{5 a}$

IR of 5a

Mass of 5a

${ }^{1} \mathrm{H}$ NMR of 5 c

${ }^{1}$ H NMR of 5d

IR of 5d

Mass of 5d

${ }^{13}$ C NMR of 5 e

Mass of 5e

Mass of 5 f

${ }^{13}$ C NMR of $\mathbf{5 g}$

${ }^{1}$ H NMR of $\mathbf{5 h}$

${ }^{13} \mathrm{C}$ NMR of 5 i

IR of $\mathbf{5 i}$

${ }^{1} \mathbf{H}$ NMR of $\mathbf{5 j}$

${ }^{13} \mathbf{C}$ NMR of $\mathbf{5 j}$

IR of $\mathbf{5 j}$

Mass of 5j

${ }^{1} \mathbf{H}$ NMR of $\mathbf{5 k}$

IR of $\mathbf{5 k}$

Mass of 5k

${ }^{1}$ H NMR of 51

${ }^{1} \mathrm{H}$ NMR of $\mathbf{5 m}$

${ }^{13}$ C NMR of $\mathbf{5 m}$
39

${ }^{1}$ H NMR of $\mathbf{5 n}$

Curgr

${ }^{1} \mathrm{H}$ NMR of 50

${ }^{1}$ H NMR of $\mathbf{5 p}$

IR of $5 p$

${ }^{1} \mathbf{H}$ NMR of $\mathbf{5 q}$

