Supplementary Information

for

Decorated Single-Enantiomer Phosphoramide-Based Silica/Magnetic Nanocomposites for Direct Enantioseparation

[^0]*For correspondence: pourayoubi@um.ac.ir (M. Pourayoubi)

Figure S1. The ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}$ spectrum of $\mathrm{P}(=\mathrm{O})\left(\mathrm{NH}-\mathrm{R}-(+) \mathrm{CH}\left(\mathrm{CH}_{3}\right) \mathrm{C}_{6} \mathrm{H}_{5}\right)_{2}\left(\mathrm{NH}^{2}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{Si}\left(\mathrm{OCH}_{3}\right)_{3}\right)$.

Assignments of NMR signals for $\mathrm{P}(=\mathrm{O})\left(\mathrm{NH}-\mathrm{R}-(+) \mathrm{CH}\left(\mathrm{CH}_{3}\right) \mathrm{C}_{6} \mathrm{H}_{5}\right)_{2}\left(\mathrm{NH}_{(}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{Si}\left(\mathrm{OCH}_{3}\right)_{3}\right)(\mathrm{PTA}(+))$

The assignments of NMR signals of $\mathrm{NH}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{Si}\left(\mathrm{OCH}_{3}\right)_{3}$ and two $\mathrm{NH}-R-(+) \mathrm{CH}\left(\mathrm{CH}_{3}\right) \mathrm{C}_{6} \mathrm{H}_{5}$ fragments in the title compound were carried out by the comparative study of NMR spectra with those in closely related compounds.

The suitable compound for study of $\mathrm{NH}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{Si}\left(\mathrm{OCH}_{3}\right)_{3}$ segment was not found in the literature; thus, we decided to synthesize a new phosphoramide compound including this fragment, i.e. $\mathrm{P}(\mathrm{O})\left(\mathrm{OC}_{6} \mathrm{H}_{5}\right)_{2}\left(\mathrm{NH}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{Si}\left(\mathrm{OCH}_{3}\right)_{3}\right)$ (PA). In this compound (figure. S2), the aliphatic groups are merely related to the $\mathrm{NH}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{Si}\left(\mathrm{OCH}_{3}\right)_{3}$ fragment, which allow to easy assignments of signals related to this silicon-based amine fragment.

The phosphoric triamide $\left[2,6-\mathrm{F}_{2}-\mathrm{C}_{6} \mathrm{H}_{3} \mathrm{C}(\mathrm{O}) \mathrm{NH}\right]\left[\mathrm{R}-(+)\left(\mathrm{C}_{6} \mathrm{H}_{5}\right) \mathrm{CH}\left(\mathrm{CH}_{3}\right) \mathrm{NH}_{2} \mathrm{P}(\mathrm{O})^{51}\right.$ (FPTA(+)) was chosen for the assignments of signals related to the chiral amine. In this compound, two sets of signals appear for two chiral amines (for both in ${ }^{1}$ HNMR and ${ }^{13} \mathrm{C}$-NMR spectra), typically two triplets for two NH units, similar to what was observed in the title compound.

Figure S2. The chemical structure of $\mathrm{P}(\mathrm{O})\left(\mathrm{OC}_{6} \mathrm{H}_{5}\right)_{2}\left(\mathrm{NH}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{Si}\left(\mathrm{OCH}_{3}\right)_{3}\right)$.

According to the aliphatic region of the ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of PA , the signals at $0.45,1.45$ and 2.90 ppm correspond to the three CH_{2} groups and the signals at 3.31 and 4.16 ppm are related to CH_{3} and NH groups, respectively. Therefore, the signals at $0.56,1.57,2.02,3.48$ and 4.28 ppm in the ${ }^{1} \mathrm{HNMR}$ spectrum of $\operatorname{PTA}(+)$ are respectively assigned to three methylene of $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}$ segment, methyl and NH. The appearance of NH peaks in both PA and PTA(+) is the same and both of them are broad.

In the ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectrum of PA , the signals in the aliphatic region are three singlets at $5.93,44.01$ and 50.18 ppm and a doublet at $24.50 \mathrm{ppm}\left({ }^{3} /_{\mathrm{p}-\mathrm{C}}=6.0 \mathrm{~Hz}\right)$. Comparatively, the two singlets at 6.42 and 46.22 ppm and the doublet at $\left.25.09 \mathrm{ppm}\left({ }^{3}\right)_{\mathrm{p}-\mathrm{c}}=6.5 \mathrm{~Hz}\right)$ for PTA(+) correspond to the CH_{2} carbon atoms of $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}$ fragment. The other signal is in the region that the signals of two CH units of two chiral segments also appear (50.10-50.90 ppm).

In the ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of PTA(+), the remaining signals in the aliphatic region are related to two CH and two CH_{3} groups. Therefore, the overlapped signals at 1.38 ppm and within 3.98-4.22 ppm correspond to two CH and two CH_{3} groups, respectively. Similar signals in the ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of FPTA(+) appear at 1.38-1.40 and 4.29-4.45 ppm, respectively. The triplets at 3.40 and 3.88 ppm for PTA(+) assign to two NH protons, in comparison with the triplets at 4.88 and 4.97 ppm in FPTA(+).

In the ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectrum of PTA $(+)$, the signals at 21.63 and 23.76 ppm are related to the carbon atoms of two CH_{3} groups. Similar signals for FPTA(+) appear as doublets at 24.92 and 25.48 ppm , however in PTA(+) the intensity of signals are low and decision about the fine structure is impossible. The two signals related to two CH units appear in the range of 50.1050.90 ppm , where the signal of OCH_{3} of silicon-based amine fragment also appears. The two CH units in the literature compound appear as singlets at 49.68 and 50.03 ppm . Also, the ${ }^{13} \mathrm{C}$ -

NMR of $\mathrm{Fe}_{3} \mathrm{O}_{4} @ \mathrm{SiO}_{2} @\left(-\mathrm{O}_{2}\left(\mathrm{OCH}_{3}\right) \mathrm{Si}\left[\left(\mathrm{CH}_{2}\right)_{3} \mathrm{NH}_{2}\right.\right.$ in solid state has been confirm the assignment of ${ }^{13} \mathrm{C}-\mathrm{NMR}$ of PA and PTA. ${ }^{\text {S2 }}$

The assignment of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ signals of aromatic segments in the title compound are not difficult, as there is no crowding in this region.

The phosphoramide $\mathrm{P}(\mathrm{O})\left(\mathrm{OC}_{6} \mathrm{H}_{5}\right)_{2}\left(\mathrm{NH}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{Si}\left(\mathrm{OCH}_{3}\right)_{3}\right)$ does not show the triethylaminehydrochloride salt in the THF solution, in opposite with this impurity in the solution of $\mathrm{P}(=\mathrm{O})\left(\mathrm{NH}-\mathrm{R}-(+) \mathrm{CH}\left(\mathrm{CH}_{3}\right) \mathrm{C}_{6} \mathrm{H}_{5}\right)_{2}\left(\mathrm{NH}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{Si}\left(\mathrm{OCH}_{3}\right)_{3}\right)$ phosphoric triamide. The amount of impurity was estimated according to the integration in the ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum. For this aim, the overlapped signals related to two methyl groups of two chiral amines were adjusted for 6 H and in this case, the signal of 9 methyl protons of triethylamine shows an integration about 2.30, showing about 13% impurity of triethylamine hydrochloride. The position of one H atom attached to N in $\mathrm{Et}_{3} \mathrm{NHCl}$ was not identified, as the integration of about 0.26 probably was overlapped in the aromatic region or exchange with some exchangeable mobile protons.

Synthesis of $\mathrm{P}(\mathrm{O})\left(\mathrm{OC}_{6} \mathrm{H}_{5}\right)_{2}\left(\mathrm{NH}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{Si}\left(\mathrm{OCH}_{3}\right)_{3}\right)$

A solution of RMBA (2.5 mmol) and TEA (2.5 mmol) in dry THF (5 ml) was added dropwise to a stirring solution of $\mathrm{PO}\left(\mathrm{OC}_{6} \mathrm{H}_{5}\right)_{2} \mathrm{Cl}(2.5 \mathrm{mmol})$ in the same solvent $(10 \mathrm{ml})$ at $0^{\circ} \mathrm{C}$. After stirring for 4 h , the obtained white solid (triethylamine-hydrochloride salt) was filtered off and the filtrate was concentrated in vacuum, and a few amounts of this solution was directly used for the NMR experiments, after adding two droplets of CDCl_{3} to the NMR tube for adjustment requirement. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}\left(\mathrm{THF} / \mathrm{CDCl}_{3}, \mathrm{ppm}\right):-0.23 .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}\left(\mathrm{THF} / \mathrm{CDCl}_{3}, \mathrm{ppm}\right): 5.93(\mathrm{~s}$, $\left.\mathrm{C}_{2}\right), 24.50\left(\mathrm{~d}, \mathrm{C}_{3},{ }^{3} \mathrm{~J}_{\mathrm{p}-\mathrm{C}}=6.0 \mathrm{~Hz}\right), 44.01\left(\mathrm{~s}, \mathrm{C}_{4}\right), 50.18\left(\mathrm{~s}, \mathrm{C}_{1}\right), 120.07\left(\mathrm{~d}, \mathrm{C}_{6},{ }^{3} \mathrm{~J}_{\mathrm{P}-\mathrm{C}}=4.9 \mathrm{~Hz}\right), 124.48$ $\left(s, C_{8}\right), 129.36\left(s, C_{7}\right), 150.91\left(d, \mathrm{C}_{5},{ }^{2} J_{\mathrm{p}-\mathrm{C}}=6.7 \mathrm{~Hz}\right) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{THF} / \mathrm{CDCl}_{3}, \mathrm{ppm}\right): 0.45\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right)$, $1.45\left(m, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.90\left(m, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.31\left(m, 9 \mathrm{H}, \mathrm{CH}_{3}\right), 4.16(b, 1 \mathrm{H}, \mathrm{NH}), 6.99-7.19(m, 10 \mathrm{H}$, $\mathrm{CH}_{\text {aromatic }}$).

Figure S3. The ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}$ spectrum of $\mathrm{P}(\mathrm{O})\left(\mathrm{OC}_{6} \mathrm{H}_{5}\right)_{2}\left(\mathrm{NH}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{Si}\left(\mathrm{OCH}_{3}\right)_{3}\right)$

Figure S4. The ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}$ spectrum of $\mathrm{P}(\mathrm{O})\left(\mathrm{OC}_{6} \mathrm{H}_{5}\right)_{2}\left(\mathrm{NH}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{Si}\left(\mathrm{OCH}_{3}\right)_{3}\right)$.

Figure S5. The ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of $\mathrm{P}(\mathrm{O})\left(\mathrm{OC}_{6} \mathrm{H}_{5}\right)_{2}\left(\mathrm{NH}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{Si}\left(\mathrm{OCH}_{3}\right)_{3}\right)$.

Figure S6. The XRD spectrum and related details of $\mathrm{Fe}_{3} \mathrm{O}_{4}$.

Figure S7. The XRD spectrum and related details of $\mathrm{Fe}_{3} \mathrm{O}_{4} @ \mathrm{SiO}_{2}$.

Figure S8. The XRD spectrum and related details of $\mathrm{Fe}_{3} \mathrm{O}_{4} @ \mathrm{SiO}_{2} @ P T A(+)$.

Figure S9. The XRD spectrum and related details of $\mathrm{Fe}_{3} \mathrm{O}_{4} @ \mathrm{SiO}_{2} @$ PTA(-).

Figure S10. The ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of (\pm)-MBA solution $\left(\mathrm{H}_{2} \mathrm{O} / \mathrm{CH}_{3} \mathrm{OH}\right)$ after enantioseparation.

References

S1 M. E. Toularoud, M. Pourayoubi, M. Dušek, V. Eigner and K. Damodaran, Acta Crystallogr. Sect. C Struct. Chem., 2018, 74, 608-617.

S2 S. Radi, S. Tighadouini, M. Bacquet, S. Degoutin, F. Cazier, M. Zaghrioui and Y. N. Mabkhot, Molecules, 2013, 19, 247-262.

[^0]: ${ }^{a}$ Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
 ${ }^{b}$ Macromolecular Chemistry II, University of Bayreuth, Universitätsstraße 30, 95440 Bayreuth, Germany

