Supporting Information for

Tuning the Biginelli Reaction Mechanism by Ionic Liquid Effect: The Combine Role of Supported Heteropolyacid Derivatives and the Acidic Strength

Elon F. Freitas,^a Roberto Y. Souza,^b Saulo T. A. Passos,^b José A. Dias,^a

Sílvia C. L. Dias.^{a*} Brenno A. D. Neto,^{b*}

^a Laboratory of Catalysis, Chemistry Institute, (IQ-UnB), University of Brasília, Campus Universitário
Darcy Ribeiro – Asa Norte, 70910-900, Brasília-DF, Brazil. E-mail: <u>scdias@unb.br</u>

^b Laboratory of Medicinal and Technological Chemistry, University of Brasília, Chemistry Institute (IQ-UnB), Campus Universitário Darcy Ribeiro, 70904-970, Brasília, DF, Brazil. E-mail:
<u>brenno.ipi@gmail.com</u>

Catalyst	$n_{(H+)}$ HPA ^a	$n_{(H+)}$ HPA (mmol g ⁻¹)	$n_{(H+)}$ HPA (mmol g ⁻¹)
	(mmol g ⁻¹)	in 30 mg catalyst ^b	in 50 mg catalyst ^c
HPW	1.04	0.031	0.052
HSiW	1.40	0.042	0.070
32% HPW/Y	0.33	0.009	0.017
46% HPW/Y	0.48	0.014	0.024
14% HSiW/Y	0.19	0.006	0.009
28% HSiW/Y	0.39	0.012	0.019
44% HSiW/Y	0.62	0.019	0.031

Table S1. Total acidity of HPA catalysts based on the amount of their protons.

^a Actual number of protons (mmol g⁻¹) on the catalyst based on HPA content. ^b Actual number of protons (mmol g⁻¹) on the 50 mg of catalyst based on HPA content. ^c Wt.% catalyst based on urea used in the reaction (60 mg).

Figure S1. ²⁷Al MAS NMR spectra of calcined zeolite Y and calcined supported 28% HSiW/Y.

Figure S2. ²⁹Si MAS NMR spectra of HY, HSiW and 28% HSiW/Y.

Figure S3. ²⁹Si MAS NMR spectrum and deconvolution of sample 28% HSiW/Y.

Figure S4. N₂ adsorption and desorption isotherm of 28% HSiW/Y.

Figure S5. N_2 adsorption and desorption isotherms of HSiW and HY.

Figure S6. The XRD patterns of calcined zeolite Y, 28% HSiW/Y and HSiW. The (*) denotes peaks related to the aluminum sample holder.

Figure S7. The FT-IR spectra of calcined zeolite Y, 28% HSiW/Y and HSiW.

Figure S8. The FT-IR spectra after pyridine gas adsorption on calcined zeolite Y, 28% HSiW/Y and HSiW.

Figure S9. ESI(+)-MS/MS of the cation of m/z 139.

Figure S10. ESI(+)-MS/MS of the iminium intermediate of m/z 149.

Figure S11. ESI(+)-MS/MS of the iminium intermediate of m/z 173.

Figure S12. ESI(+)-MS/MS of the iminium intermediate (as AcONa adduct) of *m/z* 231.

Figure S13. ESI(+)-MS/MS of the sodiated Knoevenagel intermediate of m/z 241.

Figure S14. ESI(+)-MS/MS of the protonated Biginelli adduct of m/z 261.

Figure S15. ESI(+)-MS/MS of the sodiated Biginelli adduct of m/z 283.

Figure S16. ESI-MS(+) monitoring of the Biginelli reaction in the presence of the ionic liquid BMI.PF₆ after 5, 30, 60 and 90 min of reaction. Reactions conditions: Catalyst (0.5 mol%), BMI.PF₆ (5.0 μ M), 4-chloro benzaldehyde (5.0 μ M), ethyl acetoacetate (5.0 μ M), urea (5.0 μ M). Analyses performed dissolving the reaction mixture in methanol affording the described concentrations. The inset (red) is the iminium ion intermediate of *m*/*z* 183.

Ethyl 6-methyl-2-oxo-4-phenyl-1,2,3,4-tetrahydropyrimidine-5-carboxylatev(**A**). Pale yellow solid, mp 204-205 °C. ¹H NMR (600 MHz, DMSO-*d*₆) δ ppm 9.19 (1 H, s) 7.74 (1 H, br. s.) 7.36 - 7.30 (2 H, m) 7.29 - 7.22 (4 H, m) 5.15 (1 H, d, *J*=3.30 Hz) 3.99 (2 H, q, *J*=7.21 Hz) 2.26 (3 H, s) 1.10 (4 H, t, *J*=7.15 Hz). ¹³C NMR (150 MHz, DMSO-*d*₆) δ ppm 165.3, 152.1, 148.3, 144.8, 128.4, 127.2, 126.2, 99.2, 59.1, 53.9, 17.7, 14.0. Yield: 99% (257 mg).

Figure S17. ¹H NMR (600 MHz, DMSO-d₆) of DHPM a.

Figure S18. ¹³C NMR (150 MHz, DMSO-*d*₆) of DHPM **a**.

Ethyl 4-(3-hydroxyphenyl)-6-mEthyl-2-thioxo-1,2,3,4-tetrahydropyrimidine-5 carboxylate. White solid, mp 188-189 °C. ¹H NMR (300 MHz, DMSO- d_6) δ ppm 10.30 (1 H, s) 9.68 - 9.55 (1 H, m) 9.44 (1 H, s) 7.12 (1 H, t, *J*=7.77 Hz) 6.73 - 6.56 (3 H, m) 5.08 (1 H, d, *J*=3.81 Hz) 4.02 (2 H, q, *J*=7.03 Hz) 2.28 (3 H, s) 1.12 (3 H, t, *J*=7.03 Hz). ¹³C NMR (75 MHz, DMSO- d_6) δ ppm 174.2, 165.2, 157.5, 144.8, 129.5, 117.0, 114.6, 113.2, 100.8, 59.6, 54.0, 17.2, 14.0. Yield: 89% (260 mg).

Figure S19. ¹H NMR (300 MHz, DMSO-d₆) of DHPM b.

Figure S20. ¹³C NMR (75 MHz, DMSO-*d*₆) of DHPM **b**.

Ethyl 4-(benzo[d][1,3]dioxol-5-yl)-6-mEthyl-2-thioxo-1,2,3,4-tetrahydropyrimidine-5-carboxylate. Pale yellow solid, mp 174-175 °C. ¹H NMR (300 MHz, DMSO- d_6) δ ppm 10.37 (1 H, s) 9.72 (1 H, br. s.) 6.99 - 6.82 (1 H, m) 6.77 - 6.60 (2 H, m) 6.00 (2 H, s) 5.12 (1 H, d, *J*=3.52 Hz) 4.01 (2 H, q, *J*=7.03 Hz) 2.30 (3 H, s) 1.11 (3 H, t, *J*=7.03 Hz)¹³C NMR (75 MHz, DMSO- d_6) δ ppm 165.0, 147.4, 146.8, 144.8, 137.3, 119.7,108.2, 106.8, 101.1, 100.9, 59.7, 53.8, 17.2, 14.0. Yield: 83% (265 mg).

Figure S21. ¹H NMR (300 MHz, DMSO-d₆) of DHPM c.

Figure S22. ¹³C NMR (75 MHz, DMSO-*d*₆) of DHPM c.

Ethyl4-(4-hydroxy-3-methoxyphenyl)-6-mEthyl-2-thioxo-1,2,3,4tetrahydropyrimidine-5-carboxylate. White solid, mp 208-209 °C, ¹H NMR (300 MHz, DMSO- d_6) δ ppm 10.26 (1 H, s) 9.56 (1 H, br. s.) 9.02 (1 H, s) 6.84 - 6.65 (2 H, m) 6.59 (1 H, d, J=7.91 Hz) 5.08 (1 H, br. s.) 4.02 (2 H, q, J=7.03 Hz) 3.72 (3 H, s) 2.28 (3 H, s) 1.12 (3 H, t, J=7.03 Hz)^{13}C NMR (75 MHz, DMSO- d_6) δ ppm 174.0, 165.3, 147.4, 146.2, 144.6, 134.6, 118.5, 115.4, 110.9, 101.0, 59.6, 55.6, 53.7, 17.1, 14.1. Yield: 90% (275.4 mg).

Figure S23. ¹H NMR (300 MHz, DMSO-d₆) of DHPM d.

Figure S24. ¹³C NMR (75 MHz, DMSO-*d*₆) of DHPM **d**.

Ethyl 6-mEthyl-4-phenyl-2-thioxo-1,2,3,4-tetrahydropyrimidine-5-carboxylate. Pale yellow solid, mp 198-200 °C. ¹H NMR (300 MHz, DMSO-*d*₆) δ ppm 10.34 (1 H, br. s.) 9.66 (1 H, br. s.) 7.38 - 7.20 (6 H, m) 5.17 (1 H, br. s.) 4.01 (2 H, q, *J*=7.04 Hz) 2.29 (3 H, br. s.) 1.10 (3 H, t, *J*=6.45 Hz). ¹³C NMR (75 MHz, DMSO-*d*₆) δ ppm 174.2, 165.1, 145.0, 143.5, 128.6, 127.7, 126.4, 100.7, 59.6, 54.0, 17.2, 14.0. Yield: 96% (265 mg).

Figure S25. ¹H NMR (300 MHz, DMSO-d₆) of DHPM e.

Figure S26. ¹³C NMR (75 MHz, DMSO-*d*₆) of DHPM e.

Ethyl 4-(2-hydroxyphenyl)-6-mEthyl-2-thioxo-1,2,3,4-tetrahydropyrimidine-5-carboxylate. White solid, mp 190-191°C. ¹H NMR (300 MHz, DMSO- d_6) δ ppm 9.32 (1 H, d, *J*=3.52 Hz) 9.10 (1 H, s) 7.22 - 7.13 (2 H, m) 6.97 - 6.89 (1 H, m) 6.79 (1 H, d, *J*=7.91 Hz) 4.52 (1 H, dd, *J*=4.84, 2.49 Hz) 3.97 (2 H, q, *J*=7.13 Hz) 1.83 (3 H, s) 1.00 (3 H, t, *J*=7.03 Hz). ¹³C NMR (75 MHz, DMSO- d_6) δ ppm 176.3, 167.1, 150.78, 129.2, 129.1, 122.4, 121.1, 116.4, 81.3, 60.6, 47.2, 43.1, 24.1, 13.7. Yield: 88% (257 mg).

Figure S27. ¹H NMR (300 MHz, DMSO-d₆) of DHPM f.

Figure S28. ¹³C NMR (75 MHz, DMSO-*d*₆) of DHPM **f**.

Ethyl 4-(3-hydroxyphenyl)-6-mEthyl-2-oxo-1,2,3,4-tetrahydropyrimidine-5-carboxylate. White solid, mp 169-170°C. ¹H NMR (300 MHz, DMSO-*d*₆) δ ppm 9.37 (1 H, s) 9.15 (1 H, s) 7.68 (1 H, br. s.) 7.09 (1 H, t, *J*=8.06 Hz) 6.70 - 6.58 (3 H, m) 5.05 (1 H, d, *J*=3.22 Hz) 3.99 (2 H, q, *J*=7.03 Hz) 2.23 (3 H, s) 1.08 - 1.15 (3 H, m). ¹³C NMR (75 MHz, DMSO-*d*₆) δ ppm 165.4, 157.3. 152.2, 148.1, 146.3, 129.3, 116.9, 114.2, 113.1, 104.8, 99.4, 59.2, 53.8, 17.8, 14.1. Yield: 91% (236 mg).

Figure S29. ¹H NMR (300 MHz, DMSO-d₆) of DHPM g.

Figure S30. ¹³C NMR (75 MHz, DMSO-*d*₆) of DHPM **g**.

Ethyl 4-(4-chlorophenyl)-6-mEthyl-2-oxo-1,2,3,4-tetrahydropyrimidine-5-carboxylate. Pale yellow solid, mp 211-213°C.¹H NMR (300 MHz, DMSO-*d*₆) δ ppm 9.25 (1 H, br. s.) 7.78 (1 H, br. s.) 7.39- 7.24 (4 H,) 5.13 (1 H, br. s.) 3.98 (2 H, q, *J*=6.94 Hz) 2.24 (3 H, s) 1.09 (3 H, t, *J*=6.89 Hz). ¹³C NMR (75 MHz, DMSO-*d*₆) δ ppm 165.2, 151.9, 148.7, 143.8, 131.8, 128.4 128.2, 98.8, 59.2, 53.4, 17.8, 14.1. Yield: 70% (205.6 mg).

Figure S31. ¹H NMR (300 MHz, DMSO-d₆) of DHPM h.

Figure S32. ¹³C NMR (75 MHz, DMSO-*d*₆) of DHPM **h**.

Ethyl 4-(4-bromophenyl)-6-mEthyl-2-thioxo-1,2,3,4-tetrahydropyrimidine-5-carboxylate. Yellow solid, mp 190-191°C. ¹H NMR (300 MHz, DMSO-*d*₆) δ ppm 10.39 (1 H, s) 9.70 - 9.65 (1 H, m) 7.58 - 7.52 (2 H, m) 7.20 - 7.14 (2 H, m) 5.16 (1 H, d, *J*=3.81 Hz) 4.00 (2 H, q, *J*=6.94 Hz) 2.29 (3 H, s) 1.06 - 1.13 (3 H, m). ¹³C NMR (75 MHz, DMSO-*d*₆) δ ppm 174.2, 165.0, 145.4, 142.8, 131.5, 128.7, 120.9 100.2, 59.7, 53.6, 17.2, 14.0. Yield: 84% (297 mg).

Figure S33. ¹H NMR (300 MHz, DMSO-d₆) of DHPM i.

Figure S34. ¹³C NMR (75 MHz, DMSO-*d*₆) of DHPM i.

Ethyl 4-(4-bromophenyl)-6-mEthyl-2-oxo-1,2,3,4-tetrahydropyrimidine-5-carboxylate. Pale yellow solid, mp 194-196°C. ¹H NMR (600 MHz, DMSO-*d*₆) δ ppm 9.23 (1 H, s) 7.76 (1 H, br. s.) 7.52 (2 H, d, *J*=8.44 Hz) 7.18 (2 H, d, *J*=8.44 Hz) 5.12 (1 H, d, *J*=3.30 Hz) 3.98 (2 H, q, *J*=6.97 Hz) 2.24 (3 H, s) 1.09 (3 H, t, *J*=6.97 Hz). ¹³C NMR (75 MHz, DMSO-*d*₆) δ ppm 165.2, 152.0, 148.8, 144.2, 131.4, 128.6, 120.3, 98.8, 59.3, 53.5, 17.8, 14.1. Yield: 70% (249 mg).

Figure S35. ¹H NMR (300 MHz, DMSO-d₆) of DHPM j.

Figure S36. ¹³C NMR (75 MHz, DMSO-*d*₆) of DHPM **j**.