
1	Electronic Supplementary Information
2	
3	Electrospun silica nanofiber mats
4	functionalized with ceria nanoparticles for
5	water decontamination
6	
7	Ines Zucker ^{a,b,c*} , Nadir Dizge ^{a,d} , Camrynn L. Fausey ^a , Evyatar Shaulsky ^a , Meng Sun ^a ,
8	Menachem Elimelech ^a
9	
10	
11	^a Department of Chemical and Environmental Engineering, Yale University, New Haven,
12	Connecticut 06520-8286
13	^b Porter School of Environmental Studies, Tel Aviv University, Israel
14	^c School of Mechanical Engineering, Tel Aviv University, Israel
15	^d Department of Environmental Engineering, Mersin University, Mersin, 33343, Turkey
16	
17	Enclosed:
18	Fig. S.1-S.6
19	Table S.1

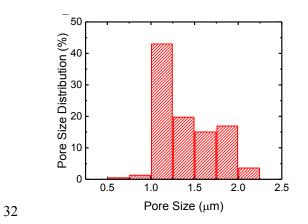
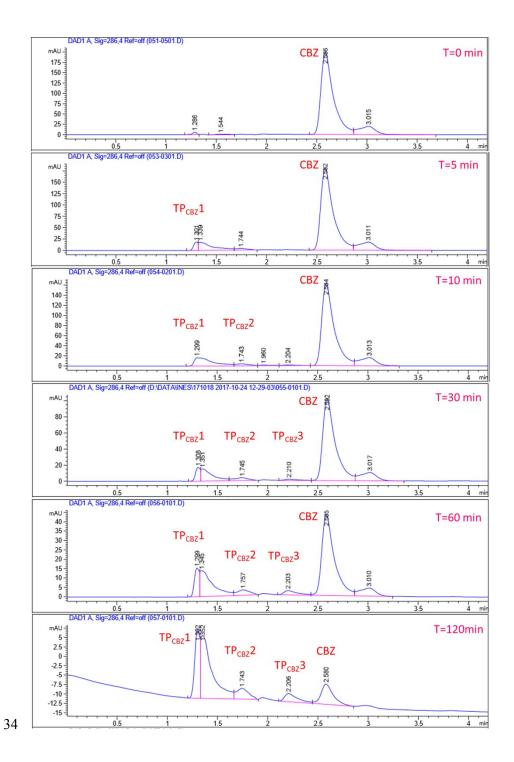
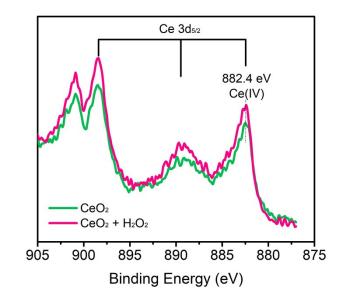


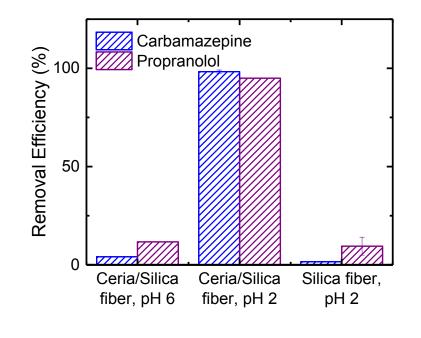
Fig. S.1. Schematic illustration of fabricating electrospun CeO₂ composite silica fibers. (A) Preparation of silica fibers by electrospinning. Experimental conditions: collector distance, 11 cm; rotating drum speed, 16 cm min⁻¹; collection time, 10 h; flow rate, 0.5 mL h⁻¹; applied voltage, 13 kV; temperature, 30°C; relative humidity, 30%. (B) CeO₂ immobilization on silica fibers. Experimental conditions: CeO₂ concentration, 1 mg mL⁻¹; fiber weight, 10 mg; shaker speed, 75 rpm; volume, 10 mL, immobilization time, 16 h; temperature, 25 °C.



28


Fig. S.2. Aggregation kinetics for ceria nanoparticle suspension (in 10 mM acetate buffer solution) at pH 2 and 6 as determined by dynamic light scattering. Light scattering data are presented as the corresponding spherical hydrodynamic radius.

33 Fig. S.3. Pore size distribution of ceria/silica nanofiber composites.



35 **Fig. S.4.** HPLC chromatographs taken during oxidation of 1 mg L⁻¹ carbamazepine (CBZ) by 36 ceria/silica fibers at pH 2 in the presence of 0.5 mM H_2O_2 . Transformation products appeared 37 during oxidation at lower retention times, and were marked as $TP_{CBZ}1$, 2 and 3.

38

39 **Fig. S.5.** High resolution X-ray photoelectron spectroscopy (XPS) spectra of dried CeO₂ 40 nanoparticles prior to and following addition of 0.5 mM H₂O₂. XPS data were obtained with 41 a scanning XPS microprobe (PHI, VersaProbe II, Japan) using monochromatic Al K α 42 radiation with a 0.47 eV system resolution.

43

44 **Fig. S.6.** Removal efficiency of 1 mg L^{-1} carbamazepine (blue) and propranolol (purple) by 45 ceria/silica fibers and pristine fibers at pH 2 and 6 in the presence of 0.5 mM H_2O_2 .

46 Table S.1. Chemical structures and properties of the trace organic compounds used in this47 study.

48

Property	Carbamazepine (CBZ)	Propranolol (PRO)	Perfluorooctanesulfonic acid (PFOS)
Chemical structure	O NH ₂	OH H O N	O HO-S-CF ₂ (CF ₂) ₆ CF ₃ O
Molecular formula	$C_{15}H_{12}N_2O$	C ₁₆ H ₂₁ NO ₂	CF ₃ (CF ₂) ₇ SO ₃ H
Molecular weight (g mol ⁻¹)	236.27	295.80	500.13
pK _a	13.9	9.42	-3.27

49