Supplementary Material

Approaching subthreshold-swing limit for thin-film transistors by using a giant-

dielectric-constant gate dielectric

Zhuo Chen, Linfeng Lan,^{a)} Junbiao Peng

State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640,

China.

^{a)} Electronic mail: lanlinfeng@scut.edu.cn

Figure S1. Histograms of the (a) mobility and (b) threshold voltage of the IZO-TFT with the

 $In_{0.0025}Nb_{0.0025}Ti_{0.995}O_2$ insulator.

Figure S2. The enlarge transfer curve of the IZO-TFT with the In_{0.0025}Nb_{0.0025}Ti_{0.995}O₂ insulator. The source-drain current hysteresis was measured by sweeping the V_G from -0.5 V to 1.0 V and then sweeping back from 1.0 V to - 0.5 V. The number of the test points for the gate voltage range from -0.5 V to 1.0 V was 101, and the time between adjacent test points was 0.5 s, so the sweep rate of V_G was 0.015 V/s. The hysteresis of I_D - V_G curve is defined by

the V_{th} difference between forward and reverse sweeps (~0.016 V).

Figure S3. The variations of time-dependent transfer curves of the IZO-TFT with the $In_{0.0025}Nb_{0.0025}Ti_{0.995}O_2$ insulator

under NBS. During the stress V_G =-0.5 V, and V_D =1 V at room temperature.