Notoamide-type alkaloids induced apoptosis and autophagy via P38/JNK signaling pathway in hepatocellular carcinoma cells

**Supporting Information** 

## List of Supporting Information

| Table S1. <sup>1</sup> H NMR data for compounds 5-11 in DMSO-d <sub>6</sub>  | S4  |
|------------------------------------------------------------------------------|-----|
| Table S2. <sup>13</sup> C NMR data for compounds 5-11 in DMSO-d <sub>6</sub> | S5  |
| Figure S1.IR spectrum of 1                                                   | S6  |
| Figure S2. <sup>1</sup> H NMR spectrum of 1                                  | S6  |
| Figure S3. <sup>13</sup> C NMR spectrum of 1                                 | S7  |
| Figure S4. <sup>1</sup> H-1H COSY spectrum of 1                              | S7  |
| Figure S5. HSQC spectrum of 1                                                | S8  |
| Figure S6. HMBC spectrum of 1                                                | S8  |
| Figure S7. NOESY spectrum of 1                                               | S9  |
| Figure S8. IR spectrum of 2                                                  | S9  |
| Figure S9. <sup>1</sup> H NMR spectrum of 2                                  | S10 |
| Figure S10. <sup>13</sup> C NMR spectrum of 2                                | S10 |
| Figure S11. <sup>1</sup> H-1H-COSY spectrum of 2                             | S11 |
| Figure S12. HSQC spectrum of 2                                               | S11 |
| Figure S13. HMBC spectrum of 2                                               | S12 |
| Figure S14. NOESY spectrum of 2                                              | S12 |
| Figure S15. HRESIMS of 2                                                     | S13 |
| Figure S16. IR spectrum of 3                                                 | S14 |
| Figure S17. <sup>1</sup> H NMR spectrum of 3                                 | S14 |
| Figure S18. <sup>13</sup> C NMR spectrum of <b>3</b>                         | S15 |
| Figure S19. <sup>1</sup> H-1H COSY spectrum of 3                             | S15 |
| Figure S20. HSQC spectrum of 3                                               | S16 |
| Figure S21.HMBC spectrum of 3                                                | S16 |
| Figure S22. NOESY spectrum of 3                                              | S17 |
| Figure S23. IR spectrum of 4                                                 | S17 |
| Figure S24. <sup>1</sup> H NMR spectrum of 4                                 | S18 |
| Figure S25. <sup>13</sup> C NMR spectrum of 4                                | S18 |
| Figure S26. <sup>1</sup> H-1H COSY spectrum of 4                             | S19 |
| Figure S27. HSQC spectrum of 4                                               | S19 |
| Figure S28. HMBC spectrum of 4                                               | S20 |
| Figure S29. NOESY spectrum of 4                                              |     |
| Figure S30. <sup>1</sup> H NMR spectrum of 5                                 | S21 |
| Figure S31. <sup>13</sup> C NMR spectrum of 5                                | S21 |
| Figure S32. CD spectrum of 5                                                 |     |
| Figure S33. <sup>1</sup> H NMR spectrum of 6                                 |     |
| Figure S34. <sup>13</sup> C NMR spectrum of 6                                | S23 |
| Figure S35. CD spectrum of 6                                                 | S23 |
| Figure S36. <sup>1</sup> H NMR spectrum of 7                                 | S24 |
| Figure S37. <sup>13</sup> C NMR spectrum of 7                                | S24 |
| Figure S38. CD spectrum of 7                                                 | S25 |
| Figure S39. <sup>1</sup> H NMR spectrum of 8                                 | S25 |
| Figure S40. <sup>13</sup> C NMR spectrum of 8                                | S26 |

| S26 |
|-----|
| S27 |
| S27 |
| S28 |
| S28 |
| S29 |
| S29 |
| S30 |
| S30 |
| S31 |
|     |

| position | 5                            | 6             | 7                  | 8                    | 9                    | 10                  | 11a            | 11b           |
|----------|------------------------------|---------------|--------------------|----------------------|----------------------|---------------------|----------------|---------------|
| _        | $\delta_H (J \text{ in Hz})$ |               |                    |                      |                      |                     |                |               |
| 1        | 3.18, m                      | 3.18, m       | 3.21, m            | 3.36, m              | 3.26, m              | 3.46, m             | 3.19, m        | 3.42, m       |
|          | 3.30, m                      | 3.29, m       | 3.31, m            |                      |                      | 3.49, m             | 3.32, m        | 1.98, m       |
| 2        | 1.84, m                      | 1.84, m       | 1.84, m            | 1.88, m              | 1.84, m              | 1.95, m             | 1.86, m        | 2.10, m       |
|          | 1.97, m                      | 1.96, m       | 1.98, m            | 2.04, m              | 1.99, m              | 2.11, m             | 2.13, m        | 2.66, m       |
| 3        | 1.84, m                      | 1.85, m       | 1.84, m            | 1.87, m              | 1.85, m              | 1.94, m             | 2.11, m        | 2.02, m       |
|          | 2.54, m                      | 2.53, m       | 2.54, m            | 2.54, m              | 2.55, m              | 2.70, m             | 2.55, m        |               |
| 5        | 2.03, d (7.4)                | 2.05, m       | 2.02, d (6.7)      | 2.12, m              | 2.06, dd(10.0,12.4)  | 2.23, m             | 2.13, m        | 2.76, d (9.5) |
|          |                              |               |                    |                      | 2.43, q (4.8,10.0)   | 2.11, m             | 2.55, m        |               |
| 6        | 2.68, t (7.4,7.8)            | 2.72, m       | 2.66, t (6.7, 7.5) | 2.84, dd, (5.5,10.2) | 2.66, dd (4,8, 10.1) | 2.66, dd (6.5,10.0) | 3.14, m        | 3.14, m       |
| 9-H/OH   | 10.74, s                     | 7.26, d (9.2) | 10.58, s           | 11.66, s             | 10.44, s             |                     | 10.87, s       |               |
| 12       | 6.97, d (9.8)                | 5.72, d (9.2) | 6.95, d, (9.3)     | 7.01, d, (9.9)       | 6.94, d (9.8)        | 7.89, d (10.1)      | 7.47, d, (9.9) | 7.07, d (9.9) |
| 13       | 5.76, d (9.8)                | 6.58, d (7.9) | 5.74, d, (9.3)     | 5.86, d, (9.9)       | 5.73, d (9.8)        | 5.93, d (10.1)      | 5.66, d, (9.9) | 5.60, d (9.9) |
| 17       | 6.54, d (8.4)                | 7.42, d (7.9) | 6.52 d (8.6Hz)     | 6.71, d, (8.5)       | 6.48, d (8.2)        | 6.86, d (8.0)       | 6.53, d (8.1)  | 6.38, d (8.6) |
| 18       | 7.36, d (8.4)                | 4.77, s       | 7.28,d (8.6Hz)     | 7.77, d, (8.5)       | 7.10, d (8.2)        | 7.58, d (8.0)       | 7.58, d (8.1)  | 6.98, d (8.6) |
| 21       | 4.76, s                      | 8.08, s       | 5.04, d (8.4)      |                      | 3.34, overlapped     | 6.80, s             | 4.86, s        | 5.30, s       |
|          |                              |               |                    |                      | 2.64, d (15.2)       |                     |                |               |
| 25-NH    | 8.07,s                       | 1.41, s       | 7.67, s            | 8.72, s              | 8.78, s              | 8.07, s             |                | 7.64, s       |
| 27       | 1.33, s                      | 1.09, s       | 1.31, s            | 1.43, s              | 1.30, s              | 1.65, s             | 1.02, s        | 1.54, s       |
| 28       | 1.00, s                      | 1.41, s       | 1.01, s            | 1.25, s              | 1.01, s              | 1.23, s             | 1.37, s        | 1.67, s       |
| 29       | 1.39, s                      | 1.41, s       | 1.38, s            | 1.41, s              | 1.39, s              | 1.47, s             | 1.25, s        | 1.32, s       |
| 30       | 1.39, s                      | 3.36, s       | 1.39, s            | 1.41, s              | 1.38, s              | 1.47, s             | 1.14, s        | 1.31, s       |
| 31       | 3.38, s                      | 10.99, s      | 5.18, d (8.4)      |                      |                      |                     |                |               |

 Table S1.
 <sup>1</sup>H NMR data for compounds 5-11 in DMSO-d<sub>6</sub>

| position | 5                      | 6     | 7     | 8     | 9     | 10    | 11a   | 11b   |
|----------|------------------------|-------|-------|-------|-------|-------|-------|-------|
| _        | $\delta_{\rm C}$ (ppm) |       |       |       |       |       |       |       |
| 1        | 43.9                   | 43.8  | 43.9  | 43.7  | 43.5  | 43.8  | 44.1  | 44.4  |
| 2        | 24.4                   | 24.4  | 24.6  | 24.1  | 24.0  | 24.2  | 24.8  | 24.5  |
| 3        | 29.0                   | 29.0  | 29.1  | 28.4  | 28.7  | 28.9  | 29.6  | 29.4  |
| 4        | 66.8                   | 66.6  | 62.8  | 67.0  | 65.9  | 66.9  | 64.4  | 65.7  |
| 5        | 29.9                   | 29.7  | 30.1  | 30.6  | 30.1  | 30.6  | 29.6  | 29.4  |
| 6        | 45.1                   | 45.6  | 44.6  | 51.1  | 49.2  | 52.9  | 46.5  | 43.2  |
| 7        | 35.4                   | 35.9  | 46.2  | 35.6  | 34.6  | 35.9  | 34.9  | 38.0  |
| 8        | 142.3                  | 139.4 | 141.4 | 158.0 | 139.6 | 144.4 | 140.3 | 151.8 |
| 10       | 133.2                  | 130.1 | 133.3 | 133.0 | 132.8 | 139.9 | 140.9 | 130.4 |
| 11       | 105.3                  | 104.9 | 105.4 | 110.0 | 104.8 | 111.5 | 111.6 | 104.4 |
| 12       | 118.4                  | 118.5 | 118.6 | 118.6 | 118.1 | 115.8 | 116.1 | 118.6 |
| 13       | 129.6                  | 129.0 | 130.7 | 130.4 | 128.9 | 132.6 | 132.2 | 128.6 |
| 14       | 75.6                   | 75.4  | 75.5  | 75.6  | 75.0  | 76.6  | 76.4  | 75.4  |
| 16       | 148.1                  | 149.0 | 148.2 | 149.0 | 147.4 | 155.2 | 153.0 | 148.8 |
| 17       | 109.7                  | 110.5 | 109.5 | 112.1 | 108.6 | 115.9 | 115.2 | 110.2 |
| 18       | 119.1                  | 119.4 | 118.8 | 120.6 | 117.5 | 120.2 | 123.0 | 119.4 |
| 19       | 122.4                  | 117.8 | 109.1 | 117.2 | 103.8 | 117.5 | 130.0 | 116.2 |
| 20       | 106.6                  | 102.8 | 105.4 | 105.9 | 121.5 | 132.5 | 116.3 | 98.2  |
| 21       | 69.2                   | 68.9  | 59.8  | 184.0 | 23.8  | 122.2 | 43.3  | 58.2  |
| 22       | 62.8                   | 62.6  | 66.8  | 67.0  | 59.6  | 62.7  | 70.1  | 61.7  |
| 23       | 167.7                  | 167.6 | 168.5 | 166.7 | 168.4 | 167.3 | 167.6 | 167.0 |
| 26       | 173.0                  | 173.0 | 172.7 | 171.8 | 173.0 | 172.0 | 173.8 | 174.9 |
| 27       | 28.9                   | 27.6  | 28.5  | 21.1  | 27.9  | 22.7  | 19.6  | 16.4  |
| 28       | 22.9                   | 20.4  | 22.3  | 26.7  | 21.5  | 14.8  | 26.6  | 26.5  |
| 29       | 27.7                   | 27.7  | 27.5  | 27.2  | 27.1  | 27.2  | 27.5  | 27.5  |
| 30       | 27.6                   | 27.3  | 27.5  | 27.1  | 27.0  | 27.1  | 27.9  | 27.1  |
| 31       | 57.5                   | 57.4  |       |       |       |       |       |       |

 Table S2.
 <sup>13</sup>C NMR data for compounds 5-11 in DMSO-d<sub>6</sub>



Figure S1. IR spectrum of compound 1



Figure S2.<sup>1</sup>H NMR spectrum of 1



Figure S3. <sup>13</sup>C NMR spectrum of 1







Figure S6. HMBC spectrum of 1



Figure S7. NOESY spectrum of 1



Figure S8. IR spectrum of 2



2







Figure S12. HSQC spectrum of 2



Figure S13. HMBC spectrum of 2



Figure S14. NOESY spectrum of 2



Figure S15. HRESIMS of 2



Figure S16. IR spectrum of 3







Figure S18. <sup>13</sup>C NMR spectrum of 3



Figure S19. <sup>1</sup>H-<sup>1</sup>H COSY spectrum of 3



Figure S21.HMBC spectrum of 3







Figure S23. IR spectrum of 4



Figure S25. <sup>12</sup>C NMR spectrum of 4







Figure S27. HSQC spectrum of 4



Figure S28. HMBC spectrum of 4



Figure S29. NOESY spectrum of 4



Figure S31. <sup>13</sup>C NMR spectrum of 5







Figure S33. <sup>1</sup>H NMR spectrum of 6



Figure S34. <sup>13</sup>C NMR spectrum of 6



Figure S35. CD spectrum of 6



Figure S37. <sup>13</sup>C NMR spectrum of 7



Figure S38. CD spectrum of 7



Figure S39. <sup>1</sup>H NMR spectrum of 8



Figure S40. <sup>13</sup>C NMR spectrum of 8



Figure S41. CD spectrum of 8



Figure S43. <sup>13</sup>C NMR spectrum of 9







Figure S45. <sup>1</sup>H NMR spectrum of 10



Figure S46. <sup>13</sup>C NMR spectrum of 10



Figure S47. CD spectrum of 10



Figure S49. <sup>13</sup>C NMR spectrum of 11



Figure S50. CD spectrum of 11