Supporting Information

Expanding the Chemical Diversity of an Endophytic Fungus *Bulgaria inquinans*, an Ascomycete Associated with Mistletoe, through OSMAC Approach

Ni P. Ariantari,^{ab} Georgios Daletos,^a Attila Mándi,^c Tibor Kurtán,^c Werner E. G. Müller,^d Wenhan Lin,^e Elena Ancheeva,^{*a} Peter Proksch^{*a}

^aInstitute of Pharmaceutical Biology and Biotechnology, Heinrich Heine University Düsseldorf, Universitätsstrasse 1, 40225 Düsseldorf, Germany

^bDepartment of Pharmacy, Faculty of Mathematic and Natural Sciences, Udayana University, 80361 Bali, Indonesia

^cDepartment of Organic Chemistry, University of Debrecen, P.O.B. 400, 4002 Debrecen, Hungary

^dInstitute of Physiological Chemistry, Universitätsmedizin der Johannes Gutenberg-Universität Mainz, Duesbergweg 6, 55128 Mainz, Germany

^eState Key Laboratory of Natural and Biomimetic Drugs, Peking University, 100191 Beijing, China

*Corresponding author

Table of Contents

	Page
Figure S1. HPLC chromatograms of EtOAc extract of <i>B. inquinans</i> (isolate MSp3-	
1) cultured on solid Czapek medium (black) compared to the OSMAC culture on	
solid Czapek medium with addition of a mixture of MgSO ₄ , NaNO ₃ and NaCl (blue)	
under UV detection at 280 nm.	5
Figure S2. HPLC chromatogram (A) and UV spectrum (B) of compound 1.	6
Figure S3. HRESIMS spectrum of compound 1.	6
Figure S4 . ¹ H NMR (600 MHz, MeOH- d_4) spectrum of compound 1 .	7
Figure S5. ¹³ C NMR (150 MHz, MeOH- d_4) spectrum of compound 1.	7
Figure S6. 1 H- 1 H COSY (600 MHz, MeOH- d_{4}) spectrum of compound 1.	8
Figure S7. HSQC (600 and 150 MHz, MeOH- d_4) spectrum of compound 1.	8
Figure S8. HMBC (600 and 150 MHz, MeOH- d_4) spectrum of compound 1.	9
Figure S9. NOESY (600 MHz, MeOH- d_4) spectrum of compound 1.	9
Figure S10. HPLC chromatogram (A) and UV spectrum (B) of compound 2.	10
Figure S11. HRESIMS spectrum of compound 2.	10
Figure S12. ¹ H NMR (600 MHz, MeOH- d_4) spectrum of compound 2.	11
Figure S13. ¹³ C NMR (150 MHz, MeOH- d_4) spectrum of compound 2.	11
Figure S14. ¹ H- ¹ H COSY (600 MHz, MeOH- d_4) spectrum of compound 2.	12
Figure S15. HSQC (600 and 150 MHz, MeOH- d_4) spectrum of compound 2.	12
Figure S16. HMBC (600 and 150 MHz, MeOH- d_4) spectrum of compound 2.	13
Figure S17. HPLC chromatogram (A) and UV spectrum (B) of compound 3.	13
Figure S18. HRESIMS spectrum of compound 3.	14
Figure S19 . ¹ H NMR (600 MHz, MeOH- d_4) spectrum of compound 3 .	14
Figure S20 . ¹³ C NMR (150 MHz, MeOH- d_4) spectrum of compound 3 .	15
Figure S21 . ¹ H- ¹ H COSY (600 MHz, MeOH- d_4) spectrum of compound 3 .	15
Figure S22. HSQC (600 and 150 MHz, MeOH- d_4) spectrum of compound 3.	16
Figure S23 . HMBC (600 and 150 MHz, MeOH- d_4) spectrum of compound 3 .	16
Figure S24. NOESY (600 MHz, MeOH- d_4) spectrum of compound 3.	17
Figure S25. HPLC chromatogram (A) and UV spectrum (B) of compound 4.	17
Figure S26. HRESIMS spectrum of compound 4.	18
Figure S27. ¹ ₁₂ NMR (600 MHz, MeOH- d_4) spectrum of compound 4.	18
Figure S28. ¹³ C NMR (150 MHz, MeOH- d_4) spectrum of compound 4.	19
Figure S29 . ¹ H- ¹ H COSY (600 MHz, MeOH- d_4) spectrum of compound 4 .	19
Figure S30. HSQC (300 and 75 MHz, MeOH- d_4) spectrum of compound 4.	20
Figure S31 . HMBC (300 and 75 MHz, MeOH- d_4) spectrum of compound 4.	20
Figure S32. HPLC chromatogram (A) and UV spectrum (B) of compound 5.	21
Figure S33. HRESIMS spectrum of compound 5.	21
Figure S34. ¹ H NMR (600 MHz, MeOH- d_4) spectrum of compound 5.	22
Figure S35. ¹³ C NMR (150 MHz, MeOH- d_4) spectrum of compound 5.	22
Figure S36. 'H-'H COSY (300 MHz, MeOH- d_4) spectrum of compound 5.	23
Figure S37. HSQC (300 and 75 MHz, MeOH- d_4) spectrum of compound 5.	23
Figure S38. HMBC (600 and 150 MHz, MeOH- d_4) spectrum of compound 5.	24
Figure S39. NOESY (600 MHz, MeOH- d_4) spectrum of compound 5.	24
Figure S40. HPLC chromatogram (A) and UV spectrum (B) of compound 6 .	25
Figure 541. HKESINIS spectrum of compound 6 .	25
FIGURE 542. HINVIK (600 WHZ, MeOH- a_4) spectrum of compound 6 .	26
FIGURE 545. UNVIK (150 MHZ, MEOH- d_4) spectrum of compound b .	20
Figure 544. H- H COS I (600 MHZ, MeOH- a_4) spectrum of compound 6 .	21

Figure S45.	HSQC (600 and 150 MHz, MeOH- d_4) spectrum of compound 6 .	27
Figure S46.	HMBC (600 and 150 MHz, MeOH- d_4) spectrum of compound 6 .	28
Figure S47.	HPLC chromatogram (A) and UV spectrum (B) of compound 7.	28
Figure S48.	HRESIMS spectrum of compound 7.	29
Figure S49.	¹ H NMR (600 MHz, MeOH- d_4) spectrum of compound 7.	29
Figure S50.	13 C NMR (150 MHz, MeOH- d_4) spectrum of compound 7.	30
Figure S51.	¹ H- ¹ H COSY (600 MHz, MeOH- d_4) spectrum of compound 7.	30
Figure S52.	HSQC (600 and 150 MHz, MeOH- d_4) spectrum of compound 7.	31
Figure S53.	HMBC (600 and 150 MHz, MeOH- d_4) spectrum of compound 7.	31
Figure S54.	HPLC chromatogram (A) and UV spectrum (B) of compound 8.	32
Figure S55.	HRESIMS spectrum of compound 8.	32
Figure S56.	¹ H NMR (600 MHz, MeOH- d_4) spectrum of compound 8 .	33
Figure S57.	¹ H- ¹ H COSY (600 MHz, MeOH- d_4) spectrum of compound 8 .	33
Figure S58.	HSQC (600 and 150 MHz, MeOH- d_4) spectrum of compound 8.	34
Figure S59.	HMBC (600 and 150 MHz, MeOH- d_4) spectrum of compound 8 .	34
Figure S60.	HPLC chromatogram (A) and UV spectrum (B) of compound 9.	35
Figure S61.	HRESIMS spectrum of compound 9.	35
Figure S62.	¹ H NMR (600 MHz, MeOH- d_4) spectrum of compound 9 .	36
Figure S63.	¹ H- ¹ H COSY (600 MHz, MeOH- d_4) spectrum of compound 9 .	36
Figure S64.	HSQC (600 and 150 MHz, MeOH- d_4) spectrum of compound 9 .	37
Figure S65.	HMBC (600 and 150 MHz, MeOH- d_4) spectrum of compound 9 .	37
Figure S66.	HPLC chromatogram (A) and UV spectrum (B) of compound 10 .	38
Figure S67.	HRESIMS spectrum of compound 10.	38
Figure S68.	¹ H NMR (600 MHz, MeOH- d_4) spectrum of compound 10 .	39
Figure S69.	¹³ C NMR (150 MHz, MeOH- d_4) spectrum of compound 10 .	39
Figure S70.	¹ H- ¹ H COSY (600 MHz, MeOH- d_4) spectrum of compound 10.	40
Figure S71.	HSQC (600 and 150 MHz, MeOH- d_4) spectrum of compound 10.	40
Figure S72.	HMBC (600 and 150 MHz, MeOH- d_4) spectrum of compound 10.	41
Figure S73.	HPLC chromatogram (A) and UV spectrum (B) of compound II.	41
Figure 574.	HRESIMS spectrum of compound 11.	42
Figure 575.	¹³ C NMR (600 MHz, MeOH- d_4) spectrum of compound 11.	42
Figure 576.	C NMR (150 MHz, MeOH- a_4) spectrum of compound 11.	43
Figure S/7.	H- H COS Y (600 MHz, MeOH- a_4) spectrum of compound 11.	43
Figure 578.	HSQC (600 and 150 MHz, MeOH- a_4) spectrum of compound 11.	44
Figure S79.	HMBC (600 and 150 MHZ, MeOH- a_4) spectrum (P) of compound 12.	44
Figure Sov.	HPEC chromatogram (A) and UV spectrum (B) of compound 12.	45
Figure Sol.	¹ H NMP (600 MHz, MeOH d.) spectrum of compound 12	45
Figure S82.	13 C NMR (150 MHz, MeOH-d ₄) spectrum of compound 12.	40 46
Figure S83.	$^{1}\text{H}_{-}^{1}\text{H}_{-}^{1}$ COSV (600 MHz MeOH-d ₄) spectrum of compound 12 .	+0 /7
Figure S85	HSOC (600 and 150 MHz, MeOH- d_4) spectrum of compound 12.	47 47
Figure S86	HMBC (600 and 150 MHz, MeOH d_4) spectrum of compound 12.	48
Figure S87	NOESY (300 MHz MeOH- d_4) spectrum of compound 12.	40
Figure S88	DEPT 135 (125 MHz, MeOH d_4) spectrum of compound 12.	40 20
Figure S89	HPLC chromatogram (A) and UV spectrum (B) of compound 13	49 <u>4</u> 9
Figure S90	HRESIMS spectrum of compound 13	50
Figure S91	¹ H NMR (600 MHz, MeOH- d_{4}) spectrum of compound 13	50
Figure S92	13 C NMR (125 MHz, MeOH- d_4) spectrum of compound 13	51
Figure S93	¹ H- ¹ H COSY (600 MHz, MeOH- d_4) spectrum of compound 13	51
Figure S94	HSOC (600 and 150 MHz. MeOH- d_4) spectrum of compound 13	52
Figure S95.	HMBC (600 and 150 MHz, MeOH- d_4) spectrum of compound 13.	52
0		

Figure S96 . NOESY (600 MHz, MeOH- d_4) spectrum of compound 13 .	53
Figure S97. HPLC chromatogram (A) and UV spectrum (B) of compound 16.	53
Figure S98. HRESIMS spectrum of compound 16.	54
Figure S99 . ¹ H NMR (600 MHz, MeOH- d_4) spectrum of compound 16 .	54
Figure S100. ¹³ C NMR (150 MHz, MeOH- d_4) spectrum of compound 16.	55
Figure S101 . ¹ H- ¹ H COSY (600 MHz, MeOH- d_4) spectrum of compound 16 .	55
Figure S102. HSQC (600 and 150 MHz, MeOH- d_4) spectrum of compound 16.	56
Figure S103 . HMBC (600 and 150 MHz, MeOH- d_4) spectrum of compound 16.	56
Figure S104. Structure and population of the low-energy CAM-B3LYP/TZVP	
PCM/MeCN conformers ($\geq 1\%$) of (<i>S</i>)-1.	57
Figure S105. Classification of the twenty-two low-energy (\geq 1%) CAM-	
B3LYP/TZVP PCM/MeCN conformers of (8R,9S)-4. Group A (44.9%) contains	
conformers A, B, E, F; group B (27.5%) contains conformers C, D, G, H, K, L, Q,	
R; group C (10.1%) contains conformers I, J, M, N; group D (3.2%) contains	
conformers O, P; group E (4.4%) contains conformers S, T, U and V.	57
Figure S106. Experimental ECD spectrum (black) of 6 in MeCN compared with the	
Boltzmann-weighted PBE0/TZVP PCM/MeCN ECD spectrum (purple) of (R)-6	
computed for the 6 low-energy CAM-B3LYP/TZVP PCM/MeCN conformers. The	
bars represent the rotational strength of the lowest-energy conformer.	58
Figure S107. Classification of the twenty-six low-energy (\geq 1%) CAM-	
B3LYP/TZVP PCM/MeCN conformers of (3 <i>S</i> ,11 <i>S</i> ,23 <i>S</i>)- 14 into conformer groups.	
Group A (72.5%) contains conformers A, B, C, D, E, F, G, I, J, K, M, N, O, Q, R, S,	
T, U, V, W, Y, Z; group B (5.0%) contains conformers H, L, X; group C (1.6%)	
contains conformer P.	58

Figure S1. HPLC chromatograms of EtOAc extract of *B. inquinans* (isolate MSp3-1) cultured on solid Czapek medium (black) compared to the OSMAC culture on solid Czapek medium with addition of a mixture of MgSO₄, NaNO₃ and NaCl (blue) under UV detection at 280 nm.

*: unidentified peaks

Compounds 4, 5, 6, 7, 16 and xenofuranone B (17) were not detected neither in the HPLC analysis of the crude extract of *B. inquinans* (isolate MSp3-1) cultured on solid Czapek medium, nor in the HPLC analysis of the crude extract of the fungal culture with addition of a mixture of MgSO₄, NaNO₃ and NaCl, perhaps due to their low amount and/or low UV absorption. However, compounds 6, 7 and 16 were only obtained from chromatographic workup on OSMAC extract, while compound 4 and xenofuranone B (17) were only afforded from extract of fungal culture without salt mixture. Compound 5 was isolated from both extracts.

Figure S2. HPLC chromatogram (A) and UV spectrum (B) of compound 1.

Figure S3. HRESIMS spectrum of compound 1.

Figure S4. ¹H NMR (600 MHz, MeOH- d_4) spectrum of compound 1.

Figure S5. ¹³C NMR (150 MHz, MeOH- d_4) spectrum of compound 1.

Figure S6. ¹H-¹H COSY (600 MHz, MeOH- d_4) spectrum of compound **1**.

Figure S7. HSQC (600 and 150 MHz, MeOH- d_4) spectrum of compound 1.

Figure S8. HMBC (600 and 150 MHz, MeOH- d_4) spectrum of compound 1.

Figure S9. NOESY (600 MHz, MeOH- d_4) spectrum of compound 1.

Figure S10. HPLC chromatogram (A) and UV spectrum (B) of compound 2.

Figure S11. HRESIMS spectrum of compound 2.

Figure S13. ¹³C NMR (150 MHz, MeOH- d_4) spectrum of compound 2.

Figure S14. ¹H-¹H COSY (600 MHz, MeOH- d_4) spectrum of compound **2**.

Figure S15. HSQC (600 and 150 MHz, MeOH- d_4) spectrum of compound 2.

Figure S16. HMBC (600 and 150 MHz, MeOH-*d*₄) spectrum of compound 2.

Figure S17. HPLC chromatogram (A) and UV spectrum (B) of compound 3.

Figure S18. HRESIMS spectrum of compound 3.

Figure S19. ¹H NMR (600 MHz, MeOH- d_4) spectrum of compound 3.

Figure S20. ¹³C NMR (150 MHz, MeOH- d_4) spectrum of compound 3.

Figure S21. ¹H-¹H COSY (600 MHz, MeOH- d_4) spectrum of compound 3.

Figure S22. HSQC (600 and 150 MHz, MeOH- d_4) spectrum of compound 3.

Figure S23. HMBC (600 and 150 MHz, MeOH- d_4) spectrum of compound 3.

Figure S24. NOESY (600 MHz, MeOH- d_4) spectrum of compound 3.

Figure S25. HPLC chromatogram (A) and UV spectrum (B) of compound 4.

Figure S26. HRESIMS spectrum of compound 4.

Figure S27. ¹H NMR (600 MHz, MeOH- d_4) spectrum of compound 4.

Figure S28. ¹³C NMR (150 MHz, MeOH- d_4) spectrum of compound 4.

Figure S29. 1 H- 1 H COSY (600 MHz, MeOH- d_{4}) spectrum of compound 4.

Figure S30. HSQC (300 and 75 MHz, MeOH- d_4) spectrum of compound 4.

Figure S31. HMBC (300 and 75 MHz, MeOH- d_4) spectrum of compound 4.

Figure S32. HPLC chromatogram (A) and UV spectrum (B) of compound 5.

Figure S33. HRESIMS spectrum of compound 5.

Figure S35. ¹³C NMR (150 MHz, MeOH- d_4) spectrum of compound 5.

Figure S36. ¹H-¹H COSY (600 MHz, MeOH- d_4) spectrum of compound **5**.

Figure S37. HSQC (600 and 150 MHz, MeOH- d_4) spectrum of compound 5.

Figure S38. HMBC (600 and 150 MHz, MeOH-*d*₄) spectrum of compound 5.

Figure S39. NOESY (600 MHz, MeOH- d_4) spectrum of compound 5.

Figure S40. HPLC chromatogram (A) and UV spectrum (B) of compound 6.

Figure S41. HRESIMS spectrum of compound 6.

Figure S42. ¹H NMR (600 MHz, MeOH- d_4) spectrum of compound 6.

Figure S43. ¹³C NMR (150 MHz, MeOH- d_4) spectrum of compound 6.

Figure S44. ¹H-¹H COSY (600 MHz, MeOH- d_4) spectrum of compound **6**.

Figure S45. HSQC (600 and 150 MHz, MeOH- d_4) spectrum of compound 6.

Figure S46. HMBC (600 and 150 MHz, MeOH-*d*₄) spectrum of compound 6.

Figure S47. HPLC chromatogram (A) and UV spectrum (B) of compound 7.

Figure S48. HRESIMS spectrum of compound 7.

Figure S49. ¹H NMR (600 MHz, MeOH- d_4) spectrum of compound 7.

Figure S51. 1 H- 1 H COSY (600 MHz, MeOH- d_{4}) spectrum of compound 7.

Figure S52. HSQC (600 and 150 MHz, MeOH- d_4) spectrum of compound 7.

Figure S53. HMBC (600 and 150 MHz, MeOH- d_4) spectrum of compound 7.

Figure S54. HPLC chromatogram (A) and UV spectrum (B) of compound 8.

Figure S55. HRESIMS spectrum of compound 8.

Figure S56. ¹H NMR (600 MHz, MeOH- d_4) spectrum of compound 8.

Figure S57. ¹H-¹H COSY (600 MHz, MeOH- d_4) spectrum of compound 8.

Figure S58. HSQC (600 and 150 MHz, MeOH- d_4) spectrum of compound 8.

Figure S59. HMBC (600 and 150 MHz, MeOH-*d*₄) spectrum of compound 8.

Figure S60. HPLC chromatogram (A) and UV spectrum (B) of compound 9.

Figure S61. HRESIMS spectrum of compound 9.

Figure S62. ¹H NMR (600 MHz, MeOH- d_4) spectrum of compound 9.

Figure S63. ¹H-¹H COSY (600 MHz, MeOH- d_4) spectrum of compound 9.

Figure S64. HSQC (600 and 150 MHz, MeOH- d_4) spectrum of compound 9.

Figure S65. HMBC (600 and 150 MHz, MeOH- d_4) spectrum of compound 9.

Figure S66. HPLC chromatogram (A) and UV spectrum (B) of compound 10.

Figure S67. HRESIMS spectrum of compound 10.

Figure S68. ¹H NMR (600 MHz, MeOH- d_4) spectrum of compound 10.

Figure S69. ¹³C NMR (150 MHz, MeOH- d_4) spectrum of compound 10.

Figure S70. 1 H- 1 H COSY (600 MHz, MeOH- d_4) spectrum of compound 10.

Figure S71. HSQC (600 and 150 MHz, MeOH- d_4) spectrum of compound 10.

Figure S72. HMBC (600 and 150 MHz, MeOH- d_4) spectrum of compound 10.

Figure S73. HPLC chromatogram (A) and UV spectrum (B) of compound 11.

Figure S74. HRESIMS spectrum of compound 11.

Figure S75. ¹H NMR (600 MHz, MeOH- d_4) spectrum of compound 11.

Figure S76. ¹³C NMR (150 MHz, MeOH- d_4) spectrum of compound **11**. Note: δ_C 166.7 was hidden in the baseline, but could be extracted from the HMBC spectrum.

Figure S77. 1 H- 1 H COSY (600 MHz, MeOH- d_4) spectrum of compound 11.

Figure S78. HSQC (600 and 150 MHz, MeOH-*d*₄) spectrum of compound 11.

Figure S79. HMBC (600 and 150 MHz, MeOH- d_4) spectrum of compound 11.

Figure S80. HPLC chromatogram (A) and UV spectrum (B) of compound 12.

Figure S81. HRESIMS spectrum of compound 12.

Figure S82. ¹H NMR (600 MHz, MeOH- d_4) spectrum of compound 12.

Figure S83. ¹³C NMR (150 MHz, MeOH- d_4) spectrum of compound 12.

Figure S84. 1 H- 1 H COSY (600 MHz, MeOH- d_{4}) spectrum of compound **12**.

Figure S85. HSQC (600 and 150 MHz, MeOH- d_4) spectrum of compound 12.

Figure S86. HMBC (600 and 150 MHz, MeOH- d_4) spectrum of compound 12.

Figure S87. NOESY (300 MHz, MeOH- d_4) spectrum of compound 12.

Figure S88. DEPT 135 (125 MHz, MeOH-d₄) spectrum of compound 12.

Figure S89. HPLC chromatogram (A) and UV spectrum (B) of compound 13.

Figure S90. HRESIMS spectrum of compound 13.

Figure S91. ¹H NMR (600 MHz, MeOH- d_4) spectrum of compound 13.

Figure S92. ¹³C NMR (125 MHz, MeOH- d_4) spectrum of compound 13.

Figure S93. 1 H- 1 H COSY (600 MHz, MeOH- d_4) spectrum of compound 13.

Figure S94. HSQC (600 and 150 MHz, MeOH-*d*₄) spectrum of compound 13.

Figure S95. HMBC (600 and 150 MHz, MeOH- d_4) spectrum of compound 13.

Figure S96. NOESY (600 MHz, MeOH- d_4) spectrum of compound 13.

Figure S97. HPLC chromatogram (A) and UV spectrum (B) of compound 16.

Figure S98. HRESIMS spectrum of compound 16.

Figure S99. ¹H NMR (600 MHz, MeOH- d_4) spectrum of compound 16.

Figure S100. ¹³C NMR (150 MHz, MeOH- d_4) spectrum of compound 16.

Figure S101. ¹H-¹H COSY (600 MHz, MeOH- d_4) spectrum of compound 16.

Figure S102. HSQC (600 and 150 MHz, MeOH- d_4) spectrum of compound 16.

Figure S103. HMBC (600 and 150 MHz, MeOH-*d*₄) spectrum of compound 16.

Figure S104. Structure and population of the low-energy CAM-B3LYP/TZVP PCM/MeCN conformers ($\geq 1\%$) of (*S*)-1.

Figure S105. Classification of the twenty-two low-energy ($\geq 1\%$) CAM-B3LYP/TZVP PCM/MeCN conformers of (8*R*,9*S*)-4. Group A (44.9%) contains conformers A, B, E, F; group B (27.5%) contains conformers C, D, G, H, K, L, Q, R; group C (10.1%) contains conformers I, J, M, N; group D (3.2%) contains conformers O, P; group E (4.4%) contains conformers S, T, U and V.

Figure S106. Experimental ECD spectrum (black) of **6** in MeCN compared with the Boltzmann-weighted PBE0/TZVP PCM/MeCN ECD spectrum (purple) of (R)-**6** computed for the 6 low-energy CAM-B3LYP/TZVP PCM/MeCN conformers. The bars represent the rotational strength of the lowest-energy conformer.

Figure S107. Classification of the twenty-six low-energy ($\geq 1\%$) CAM-B3LYP/TZVP PCM/MeCN conformers of (3*S*,11*S*,23*S*)-**14** into conformer groups. Group A (72.5%) contains conformers A, B, C, D, E, F, G, I, J, K, M, N, O, Q, R, S, T, U, V, W, Y, Z; group B (5.0%) contains conformers H, L, X; group C (1.6%) contains conformer P.