The Supporting Information

Cobalt, nickel and copper complexes with glycinamide: structural insights and magnetic properties

Darko Vušak,ª Neven Smrečki,ª Biserka Prugovečki,ª* Ivica Đilović,ª Inka Kirasić,ª Dijana Žilić,^b Senada Muratović,^b and Dubravka Matković-Čalogović^{*}

^aDivision of General and Inorganic Chemistry, Department of Chemistry, Faculty of Science, University of Zagreb, Horvatovac 102a, 10000 Zagreb, Croatia E-mail: biserka@chem.pmf.hr

^b Laboratory for Magnetic Resonances, Division of Physical Chemistry, Ruđer Bošković Institute, Bijenička 54, HR-10000 Zagreb, Croatia.

E-mail: biserka@chem.pmf.hr

^{*}To whom correspondence should be addressed.

Tel: +385-1-4606347; +385-1-4606345. Fax: + 385-1-4606341.

Fig. S1 Infrared spectra of cobalt ,nickel and copper mononuclear complexes **1–3a** and coordination polymer **3c**.

Fig. S2 ORTEP drawing of θ -H₂LCl and H₂Ll. Displacement ellipsoids of non-hydrogen atoms are drawn at 50% probability level.

Fig. S3 Fingerprint plots for α -H₂LCI (left, CSD refcode: IHUTEM) and β -H₂LCI (right) were derived from Hirshfeld surfaces (top). Relative contributions (>5%) to the Hirshfeld surface for different type of intramolecular contacts in order: H···H; O···H; Cl···H and other contacts, (top ribbon – α -H₂LCI, bottom ribbon – β -H₂LCI).

1a

1b

1c

2a

Fig. S4 ORTEP drawing of 1a, 1b, 1c, 2a, 2b and 2c_{LT}. Displacement ellipsoids of non-hydrogen atoms are drawn at 50% probability level.

Fig. S5 a) Hydrogen bond network of 1a in a-b plane; b)Hydrogen bonded chains of 1a along a axis. Displacement ellipsoids of non-hydrogen atoms are drawn at 50% probability level.

Fig. S6 Hydrogen bond network in **1c** parallel to *a-b* plane. Displacement ellipsoids of non-hydrogen atoms are drawn at 50% probability level.

Fig. S7 Hydrogen bond network in **1c** parallel to *b*-*c* plane. Displacement ellipsoids of non-hydrogen atoms are drawn at 50% probability level.

Fig. S8 Hydrogen bond network in $2c_{LT}$ parallel to *a*-*c* plane. Displacement ellipsoids of non-hydrogen atoms are drawn at 50% probability level.

Fig. S9 Hydrogen bond network in $2c_{LT}$ parallel to *b*-*c* plane. Displacement ellipsoids of non-hydrogen atoms are drawn at 50% probability level.

Fig. S10 Hirshfeld surfaces and fingerprint plots for the low temperature (left) and high temperature (right) polymorphs of compound **2c**. Relative contributions (> 5 %) to the Hirshfeld surface for different type of intramolecular contacts in order: H···H; H···I; O···H and other contacts (top ribbon – $2c_{LT}$, bottom ribbon – $2c_{RT}$).

Fig. S11 ORTEP drawing of 3b. Displacement ellipsoids of non-hydrogen atoms are drawn at 50% probability level.

Fig. S12 Hydrogen bond network in **3a** along *b* axis. Displacement ellipsoids of non-hydrogen atoms are drawn at 50% probability level.

Fig. S13 Hydrogen bond network in **3a** parallel to *a*-*c* plane. Displacement ellipsoids of non-hydrogen atoms are drawn at 50% probability level.

Fig. S14 Hydrogen bond network in **3c** parallel to *b*-*c* plane. Displacement ellipsoids of non-hydrogen atoms are drawn at 50% probability level.

Fig. S15 Hydrogen bonding of axial iodide ions in 3c.

Fig. S16 Experimental (red lines) and simulated (black lines) ESR spectra of polycrystalline samples of the **1b** and **3b**. The ESR intensities of the spectra at different temperatures are presented in the real ratios. The narrow lines labeled with asterisks originate from the ESR cavity.

Compound		Water loss	Starting temperature of	
Compound	T∕°C	w(theor.) / %	<i>w</i> (exp.) / %	complex decomposition / °C
1a	105 – 125	11.47	11.58	220
1b	110 - 130	9.97	10.31	230
1c ^a	/	/	/	/
2a	110 – 135	11.48	11.15	265
2b	105 – 135	10.13	10.03	260
2c _{RT}	100 - 160	7.25	7.35	255
3a	/	/	/	160
3b	/	/	/	165
3c	/	/	/	195

Table S1. Thermogravimetric analyses data

^a Not measured due to small amount of sample

Compound	βH₂LCI	H ₂ LI	1a	1b	1c
Empirical	$C_2H_7N_2O$, Cl	$C_2H_7N_2O$, I	$C_4H_{16}CoN_4O_4,Cl_2$	$C_4H_{16}CoN_4O_4$,	$C_4H_{16}CoN_4O_4$, I_2
formula		202.00		Br _{1.05} Cl _{0.95}	404.00
Formula weight	110.55	202.00	314.04	360.88	494.92
Crystal	0.11×0.21×0.77	0.07×0.10×0.16	0.12×0.29×0.36	0.25×0.40×0.50	0.07×0.10×0.16
Space group	D2 /m	Deal	IA cd	14 cd	Doma
space group	PZ1/III 1 6688(0)	$P(UZ_1)$	14 <u>1</u> CU 11 21/15/2)	14 ₁ cu	7 2966(A)
u/A b/Å	4.0000(9)	16.0071(4)	11.3145(2) 11.2145(2)	11.3708(2)	10 1784/8
c/Å	8 898(2)	4.0870(1) 6.7360(2)	37 9735(8)	11.3708(2) 38 3225(1 <i>1</i>)	10 1512(4)
al°	90	90	90	90	90
ß/°	101 486(19)	90	90	90	90
μ v/°	90	90	90	90	90
// V/ų	252.64(9)	587.53(2)	4861.3(2)	4954.9(3)	1440.00(11)
$D_{calc}/g \text{ cm}^{-3}$	252.64(9)	2.284	1.716	1.935	2.292
μ/mm^{-1}	0.615	5.330	1.853	4.989	5.482
F(000)	116	376	2576	2879	932
ϑ range/°	4.6-30.0	4.3-32.7	4.2-27.0	4.3-27.0	4.3-27.0
<i>Т/</i> К	293	293	293	150	150
Radiation	0.71073	0.71073	0.71073	0.71073	0.71073
wavelength					
Diffractometer					
type					
Range of <i>h, k, l</i>	-6-6; -7-8;	-28-27; -7-6; -	-14-14; -	-12-14; -	-5-9; -23-24;
	-12-12	9–10	14–14; –48–48	12–14;	-12-12
				-48-40	
Reflections	1665	5280	26763	15188	4648
collected					
Independent	795	1895	2660	2501	1606
reflections					
Observed	619	1665	2592	2324	1211
reflections					
$(l \ge 2\sigma)$					
Absorption					
correction	0.027	0.022	0.024	0.020	0.042
R_{int}	0.027	0.023	0.024	0.036	0.042
R°, WR°[I≥20(I)]	0.0406, 0.1004	0.0250, 0.0488	0.0109,	0.0238,	0.0327,
Goodpass of fit	1 1 2	1 1 1	1 12	1.02	1.02
Sc	1.12	1.11	1.15	1.05	1.05
- H atom	difference man	difference man	mixed	mixed	mixed
treatment	erenee map	since enec map			
No. of	55	64	153	161	81
parameters		-			-
No. of restraints	0	0	0	0	0
$\Delta \rho_{\min}, \Delta \rho_{\max}$	-0.34, 0.42	-0.43, 0.67	-0.17, 0.16	-0.27, 0.31	-0.65, 0.94
(e Å ⁻³)	•				

 Table S2. Crystallographic data collection and structure refinement details for complexes H₂LCl, H₂Ll, 1a, 1b and 1c.

 $\frac{(e^{-K})^{-1}}{(e^{-K})^{-1}} = \sum ||F_0| - |F_0| |/\Sigma| F_0|; \ ^{b} wR = [\sum (F_0^{-2} - F_c^{-2})^2 / \sum w(F_0^{-2})^2]^{1/2}; \ ^{c} S = \sum [w(F_0^{-2} - F_c^{-2})^2 / (N_{obs} - N_{param})]^{1/2}$

Table S3. Selected distances ([Å]) and angles ([°]) in the crystal structures of αH_2LCI [ref IHUTEM], βH_2LCI and H_2LI

Bond lengths [Å]

	α H₂LCI	βH₂LCI	H ₂ LI
	[ref IHUTEM]		
01–C1	1.2275(18)	1.228(3)	1.220(5)
N1-C1	1.315(2)	1.318(4)	1.335(6)
N2-C2	1.462(2)	1.477(4)	1.472(5)
C1–C2	1.516(2)	1.511(4)	1.514(5)
Bond angles [°]			
	αH₂LCI	βH₂LCI	H ₂ LI
	[ref IHUTEM]		
01-C1-N1	124.49(14)	124.6(2)	124.6(4)
01–C1–C2	120.25(13)	119.7(2)	119.0(4)
N1-C1-C2	115.25(13)	115.8(2)	115.2(4)
N2-C2-C1	110.57(13)	110.4(2)	110.2(3)
Torsion angles [°]			
	αH₂LCI	βH₂LCI	H ₂ LI
	[ref IHUTEM]		
01-C1-C2-N2	-31.80(18)	0.00(2)	-2(2)
N1-C1-C2-N2	149.64(15)	180.00(2)	-169.6(18)

Table S4. Geometry of selected intermolecular hydrogen bonds ($[Å], [\circ]$) for compounds $\beta H_2 LCI$ and $H_2 LI$

	D-H-A	D-H [Å]	H A [Å]	DA [Å]	D–H-A [°]
	N1-H1A O1ª	0.83(3)	2.15(3)	2.913(3)	154(2)
R-H-ICI	N1-H1BCl1 ^b	0.87(3)	2.48(3)	3.343(3)	179(3)
	N2-H2B-Cl1 ^c	0.91(4)	2.29(4)	3.172(3)	166(3)
	N2-H2C Cl1 ^d	0.90(2)	2.40(2)	3.2132(10)	150.6(18)
	N1-H1A-01 ^e	0.84(6)	2.19(5)	2.935(5)	149(4)
	N1-H1B I1 ^f	0.88(5)	2.95(4)	3.796(3)	162(8)
Hall	N2-H2C-I1g	0.89	2.73	3.619(19)	178
11221	N2-H2D I1	0.89	2.73	3.577(3)	160
	N2-H2E-I1 ^h	0.89	2.90	3.648(19)	144
	C2-H2B O1 ^d	0.97	2.59	3.009(5)	107

^a 1+x,y,z; ^b -1+x,y,z; ^cx,y,1+z,-1/2+y,2-z; ^d 1-x,-1/2+y,^e 1-z; ^f-1/2+x,-y,z; ^g -1-x,-y,1/2+z; ^h -1-x,-y,-1/2+z

Compound	2a	2b	2c _{LT}	2c _{RT}	3a	3b	3c
Empirical formula							
Empirical formula	$C_4 \Pi_{16} N_4 N IO_4, CI_2$	$C_4 \Pi_{16} N_4 N O_4,$ Broad Class	$C_4 \Pi_{16} N_4 N I O_4, I_2$	$C_4 \Pi_{16} \Pi_4 \Pi I O_4, I_2$	$C_4 \Pi_{12} Cl_2 Cu_1 N_4 O_2$	$C_4 \Pi_{12} B I_{1.30} C I_{0.70} C U N_4 O_2$	$C_4 \Pi_{12} C U_2 I_3 N_4 O_2$
Formula weight	313.82	355.61	496.72	496.72	282.63	340.41	655.96
Crystal	0.14x0.40x0.60	0.33×0.45×0.54	0.14×0.21×0.42	0.19×0.22×0.28	0.40×0.40×0.45	0.19×0.52×0.58	0.04×0.14×0.35
dimension/mm ³							
Space group	/ 4 ₁ cd	I 41cd	I 2/a	P nma	P 21/n	P 2 ₁ /n	<i>μ</i> 1
a/Å	11.2394(5)	11.3175(3)	7.2589(7)	7.5456(3)	6.8813(2)	7.0098(5)	8.0185(4)
b/Å	11.2394(5)	11.3175(3)	10.3706(10)	18.9706(7)	7.7420(2)	7.8128(3)	8.6901(4)
c/Å	37.594(4)	38.0842(14)	19.2258(17)	10.1902(3)	9.2635(2)	9.4100(5)	11.0929(5)
α/°	90	90	90	90	90	90	84.575(4)
β/°	90	90	98.742(9)	90	101.779(3)	101.963(6)	77.367(4)
γ/°	90	90	90	90	90	90	72.679(4)
V/Å ³	4749.0(7)	4878.1(3)	1430.5(2)	1458.67(9)	483.12(2)	504.16(5)	719.69(6)
$D_{calc}/g \text{ cm}^{-3}$	1.756	1.936	2.306	2.262	1.943	2.242	3.027
µ/mm⁻¹	2.086	4.905	5.675	5.565	2.787	7.478	9.378
F(000)	2592	2862	936	936	286	333	594
ϑ range/°	4.4-33.0	4.3-27.0	4.3-27.0	4.3-27.0	4.3-28.0	4.4-27.0	4.2-27.0
<i>Т/</i> К	150	150	150	295	293	293	293
Radiation wavelength	0.71073	0.71073	0.71073	0.71073	0.71073	0.71073	0.71073
Diffractometer type							
Range of <i>h</i> , <i>k</i> , <i>l</i>	-15-15; -17-16;	-14-11; -	- 9-9; - 13-13;	-9-9; -20-24; -	-9–9; -10–10;	- 8-8; - 9-9;	-10-10; -
	-55-56	14–11; –48–48	-21-24	13–7	-12-12	-12-12	11–11; –14–14
Reflections collected	21338	12846	2506	5770	11873	4025	7861
Independent	4042	3236	2506	1626	1159	1092	3084
reflections							
Observed reflections	3480	2950	2208	1374	1139	985	2548
$(l \ge 2\sigma)$							
Absorption correction							
R _{int}	0.030	0.031	0.038	0.024	0.016	0.028	0.039
R ^a , wR ^b [l≥2σ(l)]	0.0269,	0.0246,	0.0353,	0.0299,	0.0151,	0.0238,	0.0259,
	0.0592	0.0498	0.1020	0.0698	0.0479	0.0571	0.0686
Goodness-of-fit, S ^c	1.08	1.09	1.19	1.09	0.98	1.12	0.84
H atom treatment	mixed	mixed	mixed	mixed	difference	calculated	calculated
					map		
No. of parameters	149	167	78	81	86	65	137
No. of restraints	0	0	0	0	0	0	0
$\Delta ho_{\min}, \Delta ho_{\max}$ (e Å ⁻³)	-0.29, 0.43	-0.29, 0.34	-0.75, 2.28	-0.77, 0.92	-0.24, 0.42	-0.50, 0.29	-1.15, 1.08

Table S5. Crystallographic data collection and structure refinement details for complexes 2a, 2b, 2c, 3a, 3b and

3c.

 ${}^{a}R = \sum \left| \left| F_{o} \right| - \left| F_{o} \right| \right| / \sum |F_{o}|; {}^{b}wR = \left[\sum (F_{o}^{2} - F_{c}^{2})^{2} / \sum w(F_{o}^{2})^{2} \right]^{1/2}; {}^{c}S = \sum \left[w(F_{o}^{2} - F_{c}^{2})^{2} / (N_{obs} - N_{param}) \right]^{1/2}$

Table S6. Distances ([Å]) and angles ([°]) within the polyhedra of cobalt coordination spheres in the	crystal
structures of 1a , 1b and 1c .	
Bond lengths [Å]	

	1a	1b	1c
Co1-O1w	2.1445(14)	2.132(3)	2.078(6)
Co102w	2.0988(18)	2.089(3)	2.109(5)
Co1–O1 / Co1–O ⁱ			2.112(3)
Co1-O11	2.103(2)	2.096(4)	
Co1-O12	2.097(2)	2.091(4)	
Co1–N2 / Co1–N2 ⁱ			2.122(4)
Co1-N21	2.128(3)	2.116(4)	
Co1-N22	2.125(3)	2.121(4)	
Bond angles [°]			
01w-Co1-O2w	178.26(6)	178.73(13)	178.6(2)
01w-Co1-O1 / 01w-Co1-O1 ⁱ			89.35(14)
01w-Co1-O11	87.84(7)	89.59(15)	
01w-Co1-012	89.51(8)	87.74(14)	
01w–Co1–N2 / 01w–Co1–N2 ⁱ			93.07(14)
01w-Co1-N21	88.02(8)	88.18(15)	
01w-Co1-N22	87.88(8)	87.97(16)	
02w–Co1–O1 / O2w–Co1–O1 ⁱ			89.70(13)
02w-Co1-O11	90.75(8)	89.82(15)	
02w-Co1-012	87.84(7)	91.16(15)	
02w–Co1–N2 / O2w–Co1–N2 ⁱ			87.76(13)
O2w-Co1-N21	92.72(8)	92.82(16)	
02w-Co1-N22	93.36(8)	92.45(16)	
01–Co1–O1 ⁱ			94.32(13)
011-Co1-O12	91.67(8)	92.09(13)	
01–Co1–N2 / O1 ⁱ –Co1–N2 ⁱ			78.89(14)
011-Co1-N21	79.20(10)	79.68(15)	
012-Co1-N22	79.72(10)	79.39(15)	
01–Co1–N2 ⁱ / O1 ⁱ –Co1–N2			172.75(14)
011-Co1-N22	170.41(10)	171.22(15)	
012-Co1-N21	170.62(10)	170.84(15)	
N2–Co1–N2 ⁱ			107.77(16)
N21–Co1–N22	109.22(9)	108.66(16)	

Table S7. Distances ([Å]) and angles ([°]) within the polyhedra of nickel coordination spheres in the crystal structures of **2a**, **2b** and **2c**_{RT}.

Bond lengths [Å]

	2a	2b	2c _{RT}
Ni1–O1w	2.1120(17)	2.081(3)	2.094(5)
Ni1–O2w	2.083(2)	2.110(2)	2.078(6)
Ni1–O1 / Ni1–O ⁱ			2.046(3)
Ni1-011	2.039(2)	2.039(4)	
Ni1-012	2.040(2)	2.050(4)	
Ni1–N2 / Ni1–N2 ⁱ			2.072(4)
Ni1-N21	2.067(3)	2.068(4)	
Ni1-N22	2.069(3)	2.077(4)	
Bond angles [°]			
O1w-Ni1-O2w	179.60(10)	179.80(14)	176.0(3)
01w-Ni1-01 / 01w-Ni1-01 ⁱ			89.57(15)
01w-Ni1-011	90.05(9)	91.50(15)	
01w-Ni1-012	88.52(9)	90.10(15)	
O1w-Ni1-N2 / O1w-Ni1-N2 ⁱ			89.01(15)
O1w-Ni1-N21	88.31(9)	91.80(15)	
O1w-Ni1-N22	88.02(9)	91.63(15)	
02w-Ni1-01 / 02w-Ni1-01 ⁱ			87.66(19)
02w-Ni1-011	90.00(10)	88.49(14)	
02w-Ni1-012	91.09(10)	90.10(14)	
O2w-Ni1-N2 / O2w-Ni1-N2 ⁱ			93.37(19)
O2w-Ni1-N21	92.10(10)	88.00(14)	
O2w-Ni1-N22	91.88(11)	88.41(14)	
01-Ni1-01 ⁱ			91.56(12)
011-Ni1-012	90.97(11)	91.43(14)	
01-Ni1-N2 / 01 ⁱ -Ni1-N2 ⁱ			81.21(13)
011-Ni1-N21	81.56(13)	81.39(15)	
012-Ni1-N22	81.30(13)	81.38(15)	
01-Ni1-N2 ⁱ / 01 ⁱ -Ni1-N2			172.64(13)
011-Ni1-N22	172.05(10)	172.16(15)	
012-Ni1-N21	171.90(10)	172.62(15)	
N2-Ni1-N2 ⁱ			105.99(14)
N21-Ni1-N22	106.04(9)	105.69(14)	

ⁱ x,1/2-y,z

	D-H A	D–H [Å]	H A [Å]	DA [Å]	D-H-A [°]
	O1W-H1WA-Cl2a	0.850(4)	2.659(13)	3.279(2)	130.9(12)
	O1W-H1WA O12 ^a	0.850(4)	2.332(10)	2.966(3)	131.8(12)
	O1W-H1WB-011ª	0.850(5)	2.029(8)	2.844(3)	160.3(11)
	O2W-H2WA Cl2 ^b	0.850(6)	2.455(5)	3.272(2)	161.8(6)
	O2W-H2WB Cl1 ^b	0.850(6)	2.394(6)	3.217(2)	163.4(9)
	N11-H11ACl1	0.86	2.41	3.262(3)	173
1a	N11-H11B···Cl2 ^c	0.86	2.40	3.252(3)	174
	N12-H12A-Cl2	0.86	2.54	3.376(3)	166
	N12-H12B···Cl1d	0.86	2.47	3.320(3)	170
	N21-H21C···Cl1ª	0.89	2.63	3.423(2)	149
	N21-H21D-Cl1e	0.89	2.58	3.396(2)	152
	N12-H12B···Cl1ª	0.89	2.60	3.355(2)	144
	N12-H12B Cl1 ^e	0.89	2.53	3.315(2)	148
	O2W-H2WA-Br2	0.84(4)	2.44(4)	3.269(8)	168(4)
	O2W-H2WB Br1 ^f	0.85(6)	2.52(5)	3.301(9)	154(6)
	O2W-H2Wb Cl1 ^f	0.85(6)	2.49(6)	3.27(2)	154(6)
	O1W-H1WA O12 ^g	0.85(4)	2.04(5)	2.835(5)	157(5)
	O1W-H1WB Br1 ^h	0.84(3)	2.76(5)	3.370(9)	130(5)
	O1W-H1WB O11 ^g	0.84(3)	2.31(6)	2.934(5)	131(5)
	N11-H11A-Br1 ⁱ	0.88	2.55	3.413(8)	166
	N11-H11A···Cl1 ⁱ	0.88	2.55	3.409(19)	165
	N11-H11B Br2 ^j	0.88	2.50	3.372(9)	170
1b	N11-H11B···Cl2 ^j	0.88	2.49	3.36(2)	170
	N12-H12A Br2 ^k	0.88	2.46	3.340(8)	173
	N12-H12B Br1	0.88	2.40	3.274(9)	172
	N21-H21C Br1 ^h	0.91	2.60	3.389(8)	146
	N21-H21C···Cl1 ^h	0.91	2.56	3.354(18)	146
	N21-H21D-Br1	0.91	2.57	3.373(8)	147
	N21-H21D···Cl1 ¹	0.91	2.55	3.363(18)	148
	N22-H22C-Br2m	0.91	2.63	3.440(8)	149

Table S8. Geometry of selected intra- and intermolecular hydrogen bonds ([Å],[°]) for compounds **1a**, **1b** and**1c.**

	N22-H22C···Cl2 ^m	0.91	2.61	3.42(2)	148
	N22-H22DCl2n	0.91	2.64	3.462(8)	150
	N22-H22B Br2 ⁿ	0.91	2.65	3.47(2)	150
	N1-H1AI1º	0.88	2.86	3.703(4)	161
	N1-H1B I1 ^p	0.88	2.85	3.688(4)	159
1c	O1W-H1W I1	0.85(4)	2.66(4)	3.507(3)	177(5)
	N2-H2D I1 ^r	0.91	2.94	3.733(4)	147
	02W-H2W01°	0.85(4)	2.00(5)	2.789(5)	154(4)

^a 1-x,-y,z; ^b-1/2+x,-1/2-y,z; ^cx,y,1+z,-1/2+y,2-z; ^d-y,-1/2+x,1/4+z, ^e 1/2-x,-1/2+y,z; ^f1+y,3/2-x,1/4+z; ^g2-x,-y,z; ^h 1/2+y,-1+x,1/4+z; ⁱ3/2-y,1-x,1/4+z; ^j1/2+y,-1+x,1/4+z; ^k 5/2-x,-1/2+y,z; ^l1-y,-1/2+x,1/4+z; ^m-1/2+x,1/2-y,z; ⁿ2-x,1-y,z; ^o1/2+x,y,1/2-z; ^p1-x,1-y,1-z; ^r1+x,y,z

	D-H A	D-H [Å]	H…A [Å]	DA [Å]	D-H-A [°]
	O1W-H1WB Cl1 ^a	0.83(3)	2.53(3)	3.244(3)	144(3)
	O1W-H1WB O11 ^b	0.84(3)	2.46(3)	2.957(3)	119(3)
	O2W-H2WB···Cl1 ^c	0.83(3)	2.47(3)	3.271(3)	161(3)
	O1W-H1WA O12 ^b	0.85(3)	2.03(3)	2.845(3)	161(3)
	O2W-H2WA Cl2	0.84(2)	2.43(2)	3.216(3)	156(3)
	N11-H11A···Cl1d	0.86	2.52	3.357(3)	166
2a	N11-H11B Cl2 ^a	0.86	2.44	3.290(3)	171
	N12-H12A Cl2 ^e	0.86	2.39	3.248(3)	174
	N12-H12B Cl1	0.86	2.37	3.230(3)	173
	N21-H21C···Cl1ª	0.89	2.61	3.355(2)	142
	N21-H21D···Cl1 ^f	0.89	2.54	3.305(2)	145
	N22-H22C···Cl2 ^g	0.89	2.63	3.412(2)	147
	N22-H22D···Cl2 ^b	0.89	2.59	3.384(2)	149
	O1W-H1WB Br1 ^h	0.84(5)	2.50(5)	3.301(16)	162(5)
	O1W-H1WB Cl1 ^h	0.84(5)	2.47(6)	3.28(4)	162(5)
	O2W-H2WA Br2 ⁱ	0.84(4)	2.74(5)	3.367(12)	132(6)
	O2W-H2WA···Cl2 ⁱ	0.84(4)	2.56(5)	3.205(19)	134(6)
	O2W-H2WA O12 ⁱ	0.84(4)	2.37(6)	2.931(4)	125(4)
	O2W-H2WB O11 ⁱ	0.83(5)	2.06(6)	2.835(4)	157(5)
	O1W-H1WA-Br2 ^h	0.81(4)	2.50(4)	3.284(12)	164(4)
	O1W-H1WA Cl2 ^h	0.81(4)	2.50(5)	3.299(19)	168(5)
2b	N11-H11A Br1	0.88	2.45	3.327(15)	175
	N11-H11ACl1	0.88	2.41	3.28(4)	173
	N11-H11B Br2 ^j	0.88	2.36	3.232(12)	171
	N11-H11B Cl2 ^j	0.88	2.51	3.385(19)	173
	N12-H12A Br2	0.88	2.58	3.448(11)	168
	N12-H12A-Cl2	0.88	2.45	3.301(19)	164
	N12-H12B-Br1 ^k	0.88	2.47	3.336(16)	169
	N12-H12B···Cl1 ^k	0.88	2.50	3.38(4)	171
	N21-H21CBr1	0.91	2.69	3.484(15)	147

Table S9. Geometry of selected intra- and intermolecular hydrogen bonds ([Å],[°]) for compounds **2a**, **2b** and $2c_{LT}$.

	N21-H21CCl11	0.91	2.62	3.42(4)	147
	N21-H21D Br1 ^m	0.91	2.64	3.435(15)	147
	N21-H21DC1m	0.91	2.63	3.43(4)	147
	N22-H22C Br2 ^I	0.91	2.62	3.400(11)	144
	N22-H22C Cl2 ^I	0.91	2.50	3.289(19)	146
	N22-H22D Br2 ^m	0.91	2.61	3.385(11)	144
	N22-H22D Cl2 ^m	0.91	2.59	3.355(19)	142
	O1W-H1WA-01n	0.84(5)	1.97(5)	2.806(7)	173(8)
	N1-H1A I1°	0.88	2.88	3.756(6)	173
2c _{LT}	N1-H1B I1 ^p	0.88	2.88	3.676(6)	151
	O1W-H1WB I1 ^r	0.86(6)	2.71(9)	3.461(5)	147(7)
	N2-H2D-11s	0.91	2.97	3.762(6)	147
	N1-H1A-I1 ^t	0.86	2.88	3.717(4)	166
	N1-H1B I1 ^u	0.86	2.89	3.690(4)	156
2c _{RT}	O1W-H1WB I1 ^t	0.87(7)	2.11(7)	2.907(6)	157(6)
	O1W-H1WB I1	0.86(5)	2.76(6)	3.598(5)	166(7)

^a 1/2+y,x,1/4+z; ^b 1-x,1-y,z; ^c y,1/2-x,1/4+z; ^d 1/2-y,1-x,1/4+z; ^e1/2-x,1/2+y,z; ^f 1-y,-1/2+x,1/4+z; ^g 1/2+x,1/2-y,z; ^h -1/2+x,3/2-y,z; ⁱ 2-x,1-y,z; ^j y,-1/2+x,-1/4+z; ^k y,3/2-x,1/4+z; ⁱ3/2-x,-1/2+y,z; ^m2-x,1-y,z; ⁿ1/2+x,2-y,z; ^ox,1+y,z; ^p-x,1/2+y,1/2-z; ^r1/2+x,1-y,z; ^s-1/2+x,1-y,z; ^t 1/2+x,y,5/2-z; ^u 1-x,1-y,2-z

 Table S10. Distances ([Å]) and angles ([°]) within the polyhedra of copper coordination spheres in the crystal structures of 3a and 3b.

Bond lengths [Å]

	3a	3b
Cu1-Cl/ Cu1-Cl ⁱ	2.8282(3)	2.840(15)
Cu1–Br ⁱⁱ		2.941(4)
Cu1-01 / Cu1-01 ⁱ	1.9912(8)	1.9907(15)
Cu1–N2 / Cu1–N2 ⁱ	1.9809(10)	1.9707(18)
Bond angles [°]		
Cl-Cu1-O1	87.06(2)	94.9(3)
Br-Cu1-O1		92.64(9)
Cl–Cu1–N2 / Cl ⁱ –Cu1–N2 ⁱ	94.33(3)	86.0(3)
Br-Cu1-N2		84.65(10)
Cl–Cu1–Cl ⁱ	180.00	180.00
Br1–Cu1–Br1 ⁱⁱ		180
Cl-Cu1-O1 ⁱ / Cl ⁱ -Cu1-O1	92.94(2)	85.1(3)
Br-Cu1-O1 ⁱ		92.64(9)
Cl–Cu1–N2 ⁱ / Cl1 ⁱ –Cu1–N2	85.67(3)	94.0(3)
Br-Cu1-N2 ⁱ / Br ⁱ -Cu1-N2		95.35(10)
01–Cu1–N2 / O1 ⁱ –Cu1–N2 ⁱ	82.57(3)	82.4(2)
Br1 ⁱ -Cu1-O1		93.04(14)
01-Cu1-01 ⁱ	180.00	
01–Cu1–O1 ⁱⁱ		180.00
01–Cu1–N2 ⁱ / 01 ⁱ –Cu1–N2	97.43(3)	97.38(7)
Br1 ⁱ -Cu1-N2		87.36(9)
N2–Cu1–N2 ⁱ	180.00	
Br1 ⁱⁱ -Cu1-O1 ⁱⁱ		86.96(14)
Br1 ⁱⁱ -Cu1-N2 ⁱⁱ		95.1(2)
O1 ⁱⁱ -Cu1-N2 ⁱⁱ		82.4(2)

ⁱ 2-x,-y,1-z; ⁱⁱ -x, -y, 2-z

	D-H-A	D–H [Å]	H A [Å]	D A [Å]	D-H…A [°]
	N1-H1A…Cla	0.824(18)	2.474(18)	3.2800(11)	166.2(14)
3a	N1-H1B···Cl ^b	0.814(17)	2.552(16)	3.3506(11)	167.1(18)
	N2-H2C Cl ^c	0.848(19)	2.522(19)	3.3384(10)	162(2)
	N2-H2D-Cld	0.96(2)	2.74(2)	3.3282(10)	119.9(15)
	N1-H1A Br ^e	0.86	2.52	3.344(5)	160
	N1-H1ACle	0.86	2.60	3.407(18)	158
	N1-H1B Br ^f	0.86	2.61	3.452(4)	165
3b	N2-H2C Cl ^f	0.86	2.59	3.419(17)	162
	N2-H2C Br	0.89	2.90	3.384(4)	116
	N2-H2D···Br ^g	0.89	2.59	3.409(5)	154
	N2-H2D···Cl ^g	0.89	2.53	3.339(18)	151

 Table S11. Geometry of selected intermolecular hydrogen bonds ([Å],[°]) for compounds 3a and 3b.

^a1/2+x,-1/2-y,-1/2+z; ^b2-x,-1-y,1-z ^c1/2+x,-1/2-y,1/2+z; ^d2-x,-y,1-z, ^e1/2-x,1/2+y,3/2-z; ^fx,1+y,z;

^g 1/2-x,1/2+y,1/2-z

Table S12. Distances ([Å	A]) and angles ([°]) wit	hin the polyhedra	of copper coordi	nation spheres ir	the crystal
structure of 3c .					

_

Bond lengths [Å]

Cu1 ⁱ -l1	3.1632(8)
Cu1–I3	3.2963(8)
Cu1-011	1.953(4)
Cu1-012	1.958(4)
Cu1-N21	1.996(5)
Cu1-N22	1.981(5)
Cu2–I1	2.6442(8)
Cu2–I2	2.7228(9)
Cu2 ⁱⁱ –I2	2.6696(12)
Cu2–I3	2.6374(9)
Bond angles [°]	
I3-Cu1-012	89.36(12)
I3-Cu1-N21	87.30(14)
I3-Cu1-N22	86.75(15)
I1 ⁱⁱⁱ -Cu1-I3	173.99(3)
011-Cu1-012	89.26(16)
011-Cu1-N21	87.30(14)
O11-Cu1-N22	171.71(19)
11 ⁱⁱⁱ -Cu1-O11	96.97(12)
012-Cu1-N21	172.75(19)
O12-Cu1-N22	84.06(18)
11 ¹¹¹ -Cu1-O12	93.63(12)
N21-Cu1-N22	102.16(19)
I1 ⁱⁱⁱ -Cu1-N21	90.30(15)
I1 ⁱⁱⁱ -Cu1-N22	88.38(15)
I1-Cu2-I2	108.13(3)
I1-Cu2-I3	108.45(3)
I1–Cu2–I2 ⁱⁱ	112.86(3)
I2-Cu2-I3	110.57(4)
12–Cu2–I2 ⁱⁱ	112.86(3)
12 ⁱⁱ —Cu2—I3	109.74(3)

ⁱ-1+x,1+y,z; ⁱⁱ-x,1-y,1-z, ⁱⁱⁱ 1+x,-1+y,z

	D-H-A	D–H [Å]	H A [Å]	D A [Å]	D-H A [°]
	N11-H11AO11ª	0.86	2.57	3.266(7)	139
	N11-H11BI1 ^b	0.86	2.81	3.627(6)	159
	N11-H11B I1 ^c	0.86	3.02	3.863(5)	167
3c	N11-H11B I1 ^d	0.86	3.05	3.884(6)	166
	N11-H11BI1e	0.89	2.76	3.627(5)	167
	N11-H11B I1 ^f	0.89	2.95	3.707(5)	144
	N11-H11B I1 ^d	0.97	2.99	3.808(5)	143

Table S13. Geometry of selected intermolecular hydrogen bonds ($[Å],[^{\circ}]$) for compound 3c.

^a1-x,-y,-z; ^bx,-1+y,z; ^c1-x,1-y,-z; ^d1+x,y,z; ^e1+x,-1+y,z; ^f1-x,-y,1-z

Compound	5 membered ring /	5 membered ring /
compound	closest nucker description	closest pucker description
1a	Co1–O11–C11–C21–N21 /	Co1–O12–C12–C22–N22 /
	Envelope on N21	Half chair (twisted on C22–N22)
1b	Co1-O11-C11-C21-N21 /	Co1-O12-C12-C22-N22 /
	Half chair (twisted on C21–N21)	Envelope on N22
1c	Co1-O1-C1-C2-N2 /	Co1–O1 ⁱ –C1 ⁱ –C2 ⁱ –N2 ⁱ /
	Planar	Planar
2a	Ni1-011-C11-C21-N21 /	Ni1-012-C12-C22-N22 /
	Half chair (twisted on C21–N21)	Envelope on N22
2b	Ni1-011-C11-C21-N21 /	Ni1-012-C12-C22-N22 /
	Envelope on N21	Half chair (twisted on C22–N22)
2c _{LT}	Ni1-01-C1-C2-N2 /	Ni1-01"-C1"-C2"-N2" /
	Half chair (twisted on N2–Ni1)	Half chair (twisted on N2 ⁱⁱ –Ni1)
2c _{RT}	Ni1-01-C1-C2-N2 /	Ni1–O1 ^{III} –C1 ^{III} –C2 ^{III} –N2 ^{III} /
	Planar	Planar
3a	Cu1-O1-C1-C2-N2/	Cu1-O1 ^{iv} -C1 ^{iv} -C2 ^{iv} -N2 ^{iv} /
	Half chair (twisted on N2–Cu1)	Half chair (twisted on N2 ^{iv} –Cu1)
3b	Cu1-O1-C1-C2-N2/	Cu1–O1 ^v –C1 ^v –C2 ^v –N2 ^v /
	Half chair (twisted on N2–Cu1)	Half chair (twisted on N2 ^v –Cu1)
3c	Cu1-O11-C11-C21-N21/	Cu1-012-C12-C22-N22 /
	Half chair (twisted on C21–N21)	Envelope on N22

Table S14. Conformations of five membered chelate glycinamide rings in compounds 1a, 1b, 1c, 2a,

¹x,1/2-y,z; ⁱⁱ 1/2-x,y,1-z; ⁱⁱⁱ x,3/2-y,z; ^{iv} 2-x,-y,1-z, ^v 1-x, 1-y, 1-z

2b, **2c**_{LT}, **2c**_{RT}, **3a**, **3b** and **3c**.

Table S15. The principal *g*-values obtained from the spectral simulations, together with the parameter used for the simulations: g_{strain} and linewidths l_w .

Complex	$\mathbf{g} = [\mathbf{g}_x \mathbf{g}_y \mathbf{g}_z]$	g strain	<i>l_w</i> / mT	<i>Т </i> К	
1a	[5.3 4.2 2.2]	[0 0 0]	210	78	
			130	40	
1b	[6.5 3.5 2.2]	[0 0 0]	180	78	
			100	40	
3a	[2.00 2.08 2.21]	[0.25 0.0 0.0]	3	297	
		[0.25 0.0 0.0]	4	78	
3b	[2.00 2.08 2.21]	[0.16 0.0 0.04]	3	297	
		[0.7 0.0 0.04]	8	78	

Biological activity

The experiments were carried out on three human cell lines: HCT 116 (colon carcinoma), H 460 (lung carcinoma) and MCF-7 (breast carcinoma) according to the previously published experimental procedure.²¹

Briefly, the cells were grown in DMEM medium with the addition of 10% fetal bovine serum (FBS), 2 mM Lglutamine, 100 U/mL penicillin and 100 µg/mL streptomycin, and cultured as monolayers at 37 °C in a humidified atmosphere with 5% CO₂. Cells were seeded onto a standard 96-well microtiter plates and left to attach for 24 h. Next day, test compounds were added in five serial 10-fold dilutions. The cell viability was evaluated after 72 h of incubation, using MTT assay, a colorimetric assay system, which detects dehydrogenase activity in viable cells. The absorbance, measured on a microplate reader at 570 nm, is directly proportional to the cell viability. The percentage of growth (PG) of the cell lines was calculated. Obtained results are expressed as IC_{50} value which stands for the concentration of the compound necessary for 50% of growth inhibition. The IC_{50} values were calculated from concentration-response curve using linear regression analysis by fitting the test concentrations that give PG values above and below the reference value (i.e. 50%). If all of the tested concentrations produce PGs exceeding the respective reference level of effect, then the highest tested concentration is assigned as the default value by a ">" sign. Each test was performed in quadruplicate in at least two individual experiments.

	<i>IC</i> ₅₀ ^a / 10 ⁻⁶ mol dm ⁻³			
Compound	MCF-7	HCT116	H 460	
1a	11±5	≥100	≥100	
3 a	13±0.1	≥100	≥100	

 $^{a}/C_{50}$; the concentration that causes 50% growth inhibition