Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2019

Electronic Supplementary Information (ESI)

Covalently Benzimidazole Linked Reduced Graphene Oxide/Polyaniline Nanocomposite as Electrode Material

Arkapal Roy, Saptarshi Dhibar, Sibu Kundu and Sudip Malik*

School of Applied and Interdisciplinary Sciences (Formerly Polymer Science Unit), Indian

Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur,

Kolkata – 700032, India

Table of Content:	Page No
a) NMR and FTIR Spectra (Figure S1-S2)	S2
b) XRD study (Figure S3)	S3
c) XPS Study (Figure S4)	S3
d) FESEM Image of GO (Figure S5)	S4
e) CV measurements (Figure S6-S7)	S5
f) GCD measurements (Figure S8-S9)	S6
g) Impedance studies (Figure S10-S11)	S7
h) Comparative data of specific capacitance and capacitance retention for the related rGO& PANI Materials	S8

a) NMR and FTIR spectra:

Fig. S1: ¹H-NMR of 1, 3-bis(2'-benzimidazolyl)-5-aminobenzene

Fig. S2: FT-IR Spectra of 1, 3-bis(2'-benzimidazolyl)-5-aminobenzene

b) XRD study:

Fig. S4: (a) XPS survey spectra of GO; (b) deconvoluted C 1s spectra of GO and (c) deconvoluted O 1s spectra of GO

d) FESEM Image of GO:

Fig. S5: FESEM Image of GO

e) CV studies:

Fig. S6: CV study of (a) RGONBZ at 30 mV/s and (b) RGONBZ_PANI_S2 at 10mV/s

Fig. S7: Specific Capacitance vs. Current density plot for RGONBZ and RGONBZ_PANI_S2

f) GCD Studies:

Fig. S8: Charge-Discharge cycle at different current densities of (a) RGONBZ_PANI_S1, (b) RGONBZ_PANI_S3, (c) Specific capacitance vs. charge density plots for the three binary composite materials and (d) Charge –discharge comparison of three different binary composites at 0.2 A/g current densities.

Fig. S9: Plot of peak current vs. scan rate

g) Impedance studies:

Fig. S10: Impedance Spectra of (a) RGONBZ & (b) RGONBZ_PANI_S2

Fig. S11: The equivalent circuit used for the fitting of Nyquist plots (C_{dl} = double layer capacitance, W = Warburg impedance, R_{ct} = Charge-transfer resistance, R_s = Solution resistance, CPE = constant phase element)

h) Comparative data of specific capacitance & capacitance retention for the related rGO & PANI Materials

Table S1: Comparative data of specific capacitance & capacitance retention for the related rGO & PANI Materials

Materials	Specific Capacitance (F g ⁻¹)	Capacitance Retention	Reference
BI-G	781 at 0.1 A g ⁻¹	85%	1
NG	301 at 0.1 A g ⁻¹	97.1%	2
GNS/PANI	532.3 at 2mV/Sec	99.6%	3
GO/PANI	425 at 0.2 A g ⁻¹	83%	4
CFGO-PANI	525 at 0.3 A g ⁻¹	91%	5
RGONBZ	477 at 0.2 A g ⁻¹	87.9%	Present Work
RGONBZ_PANI_S2	823 at 0.2 A g ⁻¹	77.5%	Present Work