Electronic Supplementary Information (ESI)

Theoretical predictions for low-temperature phases, softening of phonons and elastic stiffnesses, and electronic properties of sodium peroxide under high pressure
Pornmongkol Jimlim, ^{a,b,c} Prutthipong Tsuppayakorn-aek, ^{a,b} Teerachote Pakornchote, ^{a,b} Annop Ektarawong, ^{a,b} Udomsilp Pinsook, ^{a,b} and Thiti Bovornratanaraks ^{*a,b}
 ^a Extreme Conditions Physics Research Laboratory, Physics of Energy Materials Research Unit, Department of Physics, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand ^b Thailand Center of Excellence in Physics, Commission on Higher Education, Bangkok 10400, Thailand ^c Department of Physics, Mahidol Wittayanusorn School, Nakhon Pathom 73170, Thailand E-mail: thiti.b@chula.ac.th
Index Page
Table S1. Structural data of Na ₂ O ₂ for the <i>Amm2</i> , the <i>P</i> -62 <i>m</i> , the <i>P</i> 2 ₁ / <i>c</i> , the <i>Pbam</i> , the <i>Pbam</i> [‡] , the <i>C</i> 2/ <i>m</i> , the <i>Pmmm</i> , the <i>Immm</i> , and the <i>I</i> 4/ <i>mmm</i> structures at different pressuresS3
Table S2. Calculated bulk and shear moduli of the Amm2 and the P-62m structures at ambient pressure
Table S3. Vibrational modes, activity in the IR and Raman spectra for the <i>P</i> -62 <i>m</i> structure at 0 GPa, the <i>Amm</i> 2 structure at 0 GPa, the $P_{2_1/c}$ structure at 22 GPa, and the <i>Pbam</i> structure at 30GPaS4
Figure S1. Simulated XRD pattern of various structures: (a) the <i>Amm</i> ² and <i>P</i> -62 <i>m</i> structures at ambient pressure and the intensity difference between both structures, (b) the P_{21}/c and <i>Pbam</i> structures at 22 GPa
Figure S2. Phonon dispersion curves and the phonon density of states for the various structures with different pressures: (a) the $P_{21/c}$ structure at 22 GPa, (b) the $P_{21/c}$ structure at 30 GPa, (c) the <i>Pbam</i> structure at 28 GPa, and (d) the <i>Pbam</i> structure at 300 GPaS5
Figure S3. Simulated XRD pattern of the crystal structures: (a) Na ₂ O ₂ -II at 550°C and ambient pressure obtained from the Tallman's experiment and (b) - (c) are the <i>I</i> 4/ <i>mmm</i> and <i>P</i> 4/ <i>mbm</i> structures at 0 K and ambient pressure obtained from the AIRSS searches
Figure S4. Simulated XRD pattern of the crystal structures: (a) Na_2O_2 -Q at room temperature and ambient pressure obtained from the Tallman's experiment and (b) - (d) are the <i>Pmmm</i> , <i>Immm</i> , and <i>C</i> 2/ <i>m</i> structures at 0 K and ambient pressure obtained from the AIRSS searches, respectivelyS6
Figure S5. Relative enthalpy of the various structures that obtained from the AIRSS searches with respect to the <i>Pbam</i> structure in the pressure range of 0-100 GPaS6

Figure S6. Plot of the angles in the same hexagonal Na layer of (a) $2 \times 2 \times 2$ supercell of the <i>P</i> -62 <i>m</i>
structure and (b) 2×2×2 supercell of the primitive Amm2 structure versus pressure from 0 to 20 GPaS7

Figure S7. Plot of the differences in the angles between the Amm2 and the P-62m structures at different pressures
Figure S8. Plots of total energy (<i>E</i>), enthalpy (<i>H</i>), and work done (<i>PV</i>) of the <i>Amm</i> 2 structure with respect to the <i>P</i> -62 <i>m</i> structure <i>versus</i> pressure
Figure S9. (a) Plot of the normalized lattice constants <i>versus</i> pressure ranging from 0 to 300 GPa. The a_0 , b_0 , and c_0 are the lattice constants at 0 GPa of the <i>Amm</i> 2 structure. (b) The volume change of the three structures of Na ₂ O ₂ at the pressure range of 0-300 GPa
Figure S10. (a) and (b) are the plots of normalized interatomic distances <i>versus</i> pressure for the O-O and Na-O in the <i>Amm</i> ² structure as (c), respectively. (d) Plot of the cell angle (γ) of the primitive <i>Amm</i> ² structure <i>versus</i> pressure from 0 to 21 GPa
Figure S11. The peroxide group alignment in each phase of Na ₂ O ₂ : (a) the <i>Amm</i> ² structure at 0 GPa, (b) the <i>P</i> -62 <i>m</i> structure at 0 GPa, (c) the <i>P</i> 2 ₁ / <i>c</i> structure at 22 GPa, (d) the <i>Pbam</i> structure at 28 GPa, (e) the <i>Pbam</i> structure at 100 GPa, and (f) the <i>Pbam</i> structure at 300 GPaS10
Figure S12. Plot of Gibbs free energy <i>versus</i> temperature for the structures at different pressures: (a) 0 and 10 GPa, (b) 22 GPa, and (c) 28 GPaS11
Figure S13. Comparison of the atomic displacement between the Tallman's and Föppl's structures using the COMPSTRU program
Figure S14. (a) Simulated XRD pattern of the Tallman's and Föppl's structures, (b) – (c) the (100) plane of the Tallman's and Foppl's structures
Figure S15. Relative Gibbs free energy (ΔG) of the <i>P</i> -62 <i>m</i> structure for the Tallman's and the Föppl's structures as a function of temperature at ambient pressure
Figure S16. Plot of the universal elastic anisotropy index (A^U) for the <i>P</i> -62 <i>m</i> and the <i>Amm</i> 2 structures <i>versus</i> pressure from 0 to 15 GPa
Figure S17. Plot of the phonon free energy for the <i>Amm</i> 2 structure <i>versus</i> volume at the different temperatures: (a) 55 K and (b) 296 KS13

_	_		Lattice					Ato	omic coordinat	es
Pressure	Structure/		Lattice	barameter		Atom	Site		(fractional)	
(GPa)	Space group	a (Å)	b (Å)	c (Å)	β (degree)			х	у	Z
0	Amm2	4.5103	10.8856	6.2819	90.000	01	4c	-0.32927	0.00000	0.00000
						O2	8f	-0.17247	-0.16666	-0.50001
						Na1	4e	-0.50000	0.31748	-0.31745
						Na3	2b	-0.50000	0.00000	-0.36509
						Na2	4d	0.00000	0.15033	-0.15030
						Na4	2a	0.00000	0.00000	-0.69939
0	<i>P-</i> 62 <i>m</i>	6.2821	6.2821	4.5114	90.000	01	2e	0.00000	0.00000	-0.17069
						O2	4h	0.33333	0.66667	0.32758
						Na1	Зf	0.36521	0.00000	0.00000
						Na2	Зg	0.69951	0.00000	0.50000
0	<i>P-</i> 62 <i>m</i> [↓]	6.22	6.22	4.47	90.000	01	2e	0.00000	0.00000	0.16700
(RT)						02	4h	0.33333	0.66667	0.33300
						Na1	Зf	0.36600	0.00000	0.00000
						Na2	Зg	0.72400	0.00000	0.50000
0	P-62 <i>m</i> *	6.208	6.208	4.469	90.000	01	2e	0.00000	0.00000	0.33200
(RT)						02	4h	0.33333	0.66667	0.16800
						Na1	Зf	0.29500	0.00000	0.00000
						Na2	Зg	0.63200	0.00000	0.50000
22	Amm2	4.1525	10.0080	5.7770	90.000	01	4c	-0.32112	0.00000	-0.00004
						02	8f	-0.18321	-0.16664	-0.50003
						Na1	4e	-0.50000	0.31479	-0.31479
						Na3	2b	-0.50000	0.00000	-0.37038
						Na2	4d	0.00000	0.14821	-0.14814
						Na4	2a	0.00000	0.00000	-0.70358
22	<i>P</i> 2 ₁ /c	4.6421	6.8657	3.6366	141.5836	0	4e	-0.49999	0.09003	-0.37268
						Na	4e	-0.00005	0.14092	0.66039
28	<i>P</i> 2 ₁ /c	4.5710	6.7955	3.5762	141.4831	0	4e	-0.49999	0.09082	-0.37198
						Na	4e	-0.00003	0.14129	0.65621
28	Pbam	3.5758	6.7976	2.8461	90.000	0	4g	0.12768	0.09089	0.00000
						Na	4h	0.15598	0.35872	0.50000
28	Pbam [‡]	3.5743	6.8001	2.8459	90.000	0	4h	-0.37247	0.40908	-0.50000
						Na	4g	-0.84429	0.35871	0.00000
100	Pbam	3.2502	6.2622	2.6121	90.000	0	4g	0.13333	0.09480	0.00000
						Na	4h	0.14474	0.35744	0.50000
200	Pbam	3.0575	5.9049	2.4648	90.000	0	4g	0.13688	0.09644	0.00000
						Na	4h	0.14323	0.35714	0.50000
300	Pbam	2.9413	5.6869	2.3741	90.000	0	4g	0.13887	0.09716	0.00000
						Na	4h	0.14311	0.35701	0.50000
0	C2/ m	7.8720	3.6262	6.1470	141.4238	0	4i	0.84296	-0.00000	1.34321
						Na	4i	0.49998	-0.00000	0.72763
0	Pmmm	6.1415	3.6241	4.9218	90.000	01	2s	0.50000	0.00000	0.15645
						02	2r	0.00000	0.50000	0.65645
						Na1	2j	0.22799	0.00000	0.50000
						Na2	2k	0.72796	0.50000	0.00000
0	Immm	6.1414	3.6242	4.9213	90.000	0	4j	0.50000	0.00000	-0.84353
						Na	4f	0.22797	0.00000	-0.50000
0	<i>I</i> 4/ <i>mmm</i>	4.4082	4.4082	5.3359	90.000	0	4e	-0.50000	-0.50000	0.35278
						Na	4c	0.00000	0.50000	1.00000

Table S1. Structural data of Na₂O₂ for the *Amm2*, the *P*-62*m*, the *P*2₁/*c*, the *Pbam*, the *Pbam*[‡], the *C*2/*m*, the *Pmmm*, the *Immm*, and the *A*/*mmm* structures at different pressures.

⁺ The *P*-62*m* structure of Na₂O₂ at ambient conditions proposed by Tallman *et al.*²

^r The *P*-62*m* structure of Na₂O₂ at ambient conditions proposed by Föppl.³

[‡] The relaxed *Pbam* structure of Na₂O₂ predicted by Deng *et al.*¹

RT: Room temperature

tructure/Space group	Condition	Bulk moduli	us (GPa)	Shear modu	lus (GPa)
Structure/Space group	Condition	GGA-PBE	LDA	GGA-PBE	LDA
Amm2		49.16	64.53	31.33	38.98
<i>P</i> -62 <i>m</i>		48.95	64.72	29.88	37.59
<i>P</i> -62 <i>m</i> ⁴	0 GPa, 0 K	56.40	-	-	-
<i>P</i> -62 <i>m</i> ⁵		49	-	29	-
P-62 <i>m</i> [†]	a mala i a mat	55.82	40.19	31.14	27.92
<i>P</i> -62 <i>m</i> §	ampient	57.16	41.37	32.11	29.08

Table S2. Calculated bulk and shear moduli of the *Amm*² and the *P*-62*m* structures at ambient pressure.

[†]using the structural data proposed by Tallman *et al.*² [§]using the structural data proposed by Föppl *et al.*³

Table S3. Vibrational modes, activity in the IR and Raman spectra for the *P*-62m structure at 0 GPa, the *Amm*² structure at 0 GPa, the $P_{21/c}$ structure at 22 GPa, and the *Pbam* structure at 30 GPa.

Structure/	Vibrational	Frequency	Activity	Structure/	Vibrational	Frequency	Activity
Space group	mode	(cm ⁻¹)		Space group	mode	(cm⁻¹)	
	A"2 E'	129.3, 195.0, 292.3 169.6, 203.4, 224.9, 286.4, 316.3, 338.0	IR IR / Raman		B1	223.4, 232.7, 260.4, 263.6, 271.8, 305.1, 314.5, 340.8, 779.1	IR / Raman
<i>P</i> -62 <i>m</i> at 0 GPa	A' ₁	169.6, 278.8, 780.8, 821.0	Raman	Amm2 at 0 GPa	B ₂	124.4, 183.2, 216.3, 219.7, 283.8, 294.0, 331.3, 337.2	IR / Raman
	A'2	180.8, 275.5, 773.5	-		A ₁	225.0, 227.9, 254.8, 261.4, 295.3, 310.9, 317.7, 331.4, 784.9, 821.5	IR / Raman
	E"	221.8, 226.5, 242.5, 293.2, 318.4	Raman		A ₂	108.2, 196.7, 210.9, 262.2, 307.5, 358.0	Raman
					B _{1u}	405.9	IR
	Au	194.9, 237.2, 295.1, 341.9,	IR		B _{2u}	262.5, 318.7, 449.9 305.9, 332.1,	IR
	u	418.5			B _{3u}	432.6	IR
					Au	199.3, 359.7	-
					B _{2q}	236.2, 361.1	Raman
<i>P</i> 2 ₁ /c at 22 GPa	Bu	262.3, 305.3, 380.5, 415.3	IR	<i>Pbam</i> at 30 GPa	B _{3g}	255.8, 336.8	Raman
	Ag	237.2, 268.2, 345.8, 372.8, 433.3, 780.8	Raman		Ag	274.1, 378.0, 461.3, 815.3	Raman
	Bg	244.4, 337.4, 348.7, 412.6, 440.0, 766.6	Raman		B _{1g}	357.6, 431.6, 461.9, 797.2	Raman

Figure S1. Simulated XRD pattern of various structures: (a) the *Amm*² and *P*-62*m* structures at ambient pressure and the intensity difference between both structures, (b) the $P_{21/c}$ and *Pbam* structures at 22 GPa.

Figure S2. Phonon dispersion curves and the phonon density of states for the various structures with different pressures: (a) the $P2_1/c$ structure at 22 GPa, (b) the $P2_1/c$ structure at 30 GPa, (c) the *Pbam* structure at 28 GPa, and (d) the *Pbam* structure at 300 GPa.

Figure S3. Simulated XRD pattern of the crystal structures: (a) Na₂O₂-II at 550°C and ambient pressure obtained from the Tallman's experiment ⁶ and (b) - (c) are the I/Immm and P4/mbm structures at 0 K and ambient pressure obtained from the AIRSS searches.

Figure S4. Simulated XRD pattern of the crystal structures: (a) Na₂O₂-Q at room temperature and ambient pressure obtained from the Tallman's experiment ⁶ and (b) - (d) are the *Pmmm, Immm,* and *C*2/*m* structures at 0 K and ambient pressure obtained from the AIRSS searches, respectively.

Figure S5. Relative enthalpy of the various structures that obtained from the AIRSS searches with respect to the *Pbam* structure in the pressure range of 0-100 GPa.

Figure S6. Plot of the angles in the same hexagonal Na layer of (a) $2 \times 2 \times 2$ supercell of the *P*-62*m* structure and (b) $2 \times 2 \times 2$ supercell of the primitive *Amm*2 structure *versus* pressure from 0 to 20 GPa.

Figure S7. Plot of the differences in the angles between the Amm2 and the P-62m structures at different pressures.

Figure S8. Plot of total energy (*E*), enthalpy (*H*), and work done (*PV*) of the *Amm*² structure with respect to the *P*-62*m* structure *versus* pressure.

Figure S9. (a) Plot of the normalized lattice constants *versus* pressure ranging from 0 to 300 GPa. The a_0 , b_0 , and c_0 are the lattice constants at 0 GPa of the *Amm*2 structure. (b) The volume change of the three structure of Na₂O₂ at the pressure range of 0-300 GPa: the *Amm*2, the *P*2₁/*c*, and the *Pbam* structures.

Figure S10. (a) and (b) are the plots of normalized interatomic distances *versus* pressure for the O-O and Na-O in the *Amm*2 structure as (c), respectively. (d) Plot of the cell angle (γ) of the primitive *Amm*2 structure *versus* pressure from 0 to 21 GPa.

Figure S11. The peroxide group alignment in each phase of Na₂O₂: (a) the *Amm*² structure at 0 GPa, (b) the *P*-62*m* structure at 0 GPa, (c) the *P*2₁/*c* structure at 22 GPa, (d) the *Pbam* structure at 28 GPa, (e) the *Pbam* structure at 100 GPa, and (f) the *Pbam* structure at 300 GPa.

Figure S12. Plot of Gibbs free energy *versus* temperature for the structures at different pressures: (a) 0 and 10 GPa, (b) 22 GPa, and (c) 28 GPa.

	WD.	A 4	Atomic Displacements					
	VVP	Atom	u _x	uy	uz	u		
3f	(x,0,0)	Na2	0.0020	0.0000	0.0000	0.0124		
2e	(0,0,z)	01	0.0000	0.0000	0.0010	0.0045		
3g	(x,0,1/2)	Na1	-0.0190	0.0000	0.0000	0.1182		
4h	(1/3,2/3,z)	02	0.0000	0.0000	-0.0010	0.0045		

NOTE: ux, uv and uz are given in relative units. |u| is the absolute distance given in Å

Available from: http://www.cryst.ehu.es/cgi-bin/cryst/programs/nph-compstru

Figure S13. Comparison of the atomic displacement between the Tallman's and Föppl's structures using the COMPSTRU program.⁷

Figure R14. (a) Simulated XRD pattern of the Tallman's and Föppl's structures, (b) - (c) the (100) plane of the Tallman's and Foppl's structures.

Figure S15. Relative Gibbs free energy (Δ G) of the *P*-62*m* structure between the Tallman's and the Föppl's structures as a function of temperature at ambient pressure.

Figure S16. Plot of the universal elastic anisotropy index (A^U) for the *P*-62*m* and the *Amm*2 structures *versus* pressure from 0 to 15 GPa.

Figure S17. Plot of the phonon free energy for the *Amm*² structure *versus* volume at the different temperatures: (a) 55 K and (b) 296 K.

References

- [1] N. Deng, W. Wang, G. Yang and Y. Qiu, *RSC Adv.*, 2015, **5**, 104337-104342.
- [2] R. L. Tallman, J. L. Margrave and S. W. Bailey, J. Am. Chem. Soc., 1957, 79, 2979-2980.
- [3] H. Föppl, Z. Anorg. Allg. Chem., 1957, 291, 12-50.
- [4] M. V. Aleinikova, Y. N. Zhuravlev and D. V. Korabelnikov, *Russ. Phys. J.*, 2012, 55, 495-500.
- [5] M. de Jong, W. Chen, T. Angsten, A. Jain, R. Notestine, A. Gamst, M. Sluiter, C. K. Ande, S. van der Zwaag, J. J. Plata, C. Toher, S. Curtarolo, G. Ceder, K. A. Persson and M. Asta, *Sci. Data.*, 2015, 2, 150009.
- [6] R. L. Tallman and J. L. Margrave, J. Inorg. Nucl. Chem., 1961, 21, 40-44.
- [7] G. de la Flor, D. Orobengoa, E. Tasci, J. M. Perez-Mato and M. I. Aroyo, *J. Appl. Cryst.*, 2016, **49**, 653-664.