Supporting Information

Hollow Cu-doped NiO microspheres as anode materials with enhanced lithium storage performance

Qiwen Hu,^a Wenyao Li^{*},^a Dina Ibrahim Abouelamaiem,^b Chaoting Xu,^c Haishun Jiang,^a Weihua Han^{d*} and Guanjie He^{*b}

^aSchool of Material Engineering, Shanghai University of Engineering Science, Shanghai 201620, China.

^b Materials Chemistry Centre, Department of Chemistry, University College London,

20, Gordon Street, London WC1H 0AJ, UK.

^c State Key Laboratory for Modification of Chemical Fibers and Polymer Materials,

College of Materials Science and Engineering, Donghua University, Shanghai 201620, China

^d School of Physical Science and Technology, Lanzhou University, Lanzhou 730000, China

E-mail: liwenyao314@gmail.com; guanjie.he.14@ucl.ac.uk; hanwh@lzu.edu.cn

Fig. S1 Low magnification SEM images of (a) NiO and (b) Cu-doped NiO.

Fig. S3 First three consecutive CV curves of Cu-doped NiO at 0.1 mV s⁻¹ scan rate.

Fig. S4 First three consecutive CV curves of NiO at 0.1 mV s⁻¹.

Fig. S5 Galvanostatic discharge and charge profiles of the 1^{st} , 2^{nd} and 3^{rd} cycles of NiO at a current density of 100 mA g⁻¹,