Supplementary Data

Green and sustainable zero-waste conversion of water hyacinth (*Eichhornia crassipes*) into superior magnetic carbon composite and supercapacitor electrodes Amonrada Saning^a, Servann Herou^b, Decha Dechtrirat^c, Chanoknan Ieosakulrat^d, Pasit Pakawatpanurut^d, Sulawan Kaowphong^e, Chanchana Thanachayanont^f, Maria-Magdalena

Titirici^{b,g}, Laemthong Chuenchom^{a*}

^aDepartment of Chemistry and Center for Excellence for Innovation in Chemistry (PERCH-CIC),

Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand.

^bImperial College London, Department of Chemical Engineering, South Kensington Campus,

SW7 2AZ, United Kingdom

^cDepartment of Materials Science, Faculty of Science, Kasetsart University, Ngam Wong Wan Road, Lat Yao Chatuchak Bangkok 10900, Thailand

^dDepartment of Chemistry and Center of Excellence for Innovation in Chemistry (PERCH-CIC),

Faculty of Science, Mahidol University, Rama VI Rd, Bangkok 10400, Thailand.

^eDepartment of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand.

^fNational Metal and Materials Technology Center (MTEC), National Science and Technology Development Agency (NSTDA), Pathumthani 12120, Thailand

^gQueen Mary University of London, School of Engineering and Materials Science, Mile End Road, E1 4NS, London, UK

* Corresponding author. Tel.: +66 74 288416; fax: +66 74 558841. Email address: laemthong.c@psu.ac.th (L. Chuenchom)

1

T-Cell scheme

Fig. S1 (a) Section of a Swagelok cell (taken from M. Karthik et al ¹) (b) Picture of the electrochemical cell.

Fig. S2 Electrochemical stability window of 6MKOH compared to other electrolytes ($1M H_2SO_4$, $0.5M K_2CO_3$ and saturated NaClO₄). (a) and (b), Cyclovoltammograms showing the corrosion or degradation current peaks observed at various potentials; (c) and (d) Cyclovoltammograms showing the stable electrochemical potential window chosen for each electrolyte. It is seen that 6M KOH allows a voltage window of 1.2 V while avoiding electrolyte degradation at high overpotential.

Matariala	wt%						
waterials	С	0	Ν	Са	Si	Mg	Cl
МѠННТС	65.80	27.63	1.84	2.75	1.95	-	-
MWHHTC(1)-800	76.45	16.44	-	7.10	-	-	-
CLP	60.82	24.60	4.73	2.93	1.34	2.59	2.98
CLP+KOH-800	78.73	15.05	-	-	6.22	-	-

Table S1. Elemental compositions of prepared carbon materials characterized by XPS.

Matorials	%Area						
Waterials	C=C	C-0	C-O-C	C=O	0-C=0	ππ*	
МѠННТС	43.3	14.0	22.2	14.0	6.4	-	
MWHHTC(1)-800	65.5	16.7	6.8	4.6	4.0	2.4	
CLP	43.3	14.0	22.2	14.0	-	-	
CLP+KOH-800	64.9	16.6	8.4	5.2	5.0	-	

Table S2. %Area of functional groups derived from C1s deconvolution XPS spectra of prepared materials.

Materials	BET surface area (m² g⁻¹)	total pore volume (cm³ g ⁻¹)	micropore volume (cm³ g ⁻¹)	mesopore fraction (%)
MWHHTC	7.35	0.0440	0.0006	98.64
MWHHTC(1)-800	973.56	0.6217	0.0888	85.71
CLP-800	144.70	0.0849	0.0311	62.64
CLP+KOH-800	2544.87	1.4563	0.0889	93.90

 Table S3. BET surface area, total pore volume micropore volume and mesopore fraction of prepared materials.

Fig. S3. TGA thermogram of CLP. The experiment was performed from 50-1000 °C (ramp rate: 10 °C min⁻¹)

Fig. S4. XPS C1s spectra of (a) WHHTC and (b) MWHHTC(1)-800.

	Pseudo	Pseudo second kinetic model			Langmuir model		
Adsorbate	k ₂ (g (mg min) ⁻¹)	q _e (mg g ⁻¹)	R ²	K _L (L mg ⁻¹)	q _{max} (mg g ⁻¹)	R^2	
Methylene blue	9.14x10 ⁻⁵	500.41	0.99806	5.6447	524.20	0.90041	
Methyl orange	2.73x10 ⁻⁴	421.61	0.99913	1.1772	425.15	0.99781	
Tetracycline	2.82x10 ⁻⁴	288.00	0.99926	2.7576	294.24	0.93822	

 Table S4. Pseudo second kinetic and Langmuir parameters of MWHHTC(1)-800 on MB, MO and TC adsorption.

Table S5. The comparison of k ₂ (pseudo-second model) and q _e (Langmuir model) on MB, MO and TC adsorption between this study and others from
literature.

materials	S _{BET} (m ² g ⁻¹)	adsorbate	k ₂ (g (mg min) ⁻¹)	q _{max} (mg g⁻¹)	Ref.
Magnetic carbon from mangosteen peels	831.5		-	46.296	[²]
Magnetic carbon from corncob	153.89	Methylene Blue	3.17x10 ⁻⁴ at 281.25 mg L ⁻¹	163.93	[³]
Magnetite silica gel	597.09		2.81×10^3 at 250 mg L ⁻¹	246.31	[⁴]
Magnetic graphene sponge	-		1.5x10 ⁻⁴ at 175 mg L ⁻¹	526	[⁵]
Amino-functionalized magnetic bacterial cellulose/activated carbon	-		1.6x10 ⁻³ at 50 mg L ⁻¹	98.33	[6]
Carbon dots/ZnFe ₂ O ₄	116.8	Methyl orange	2.7×10^{-2} at 20 mg L ⁻¹	181.2	[7]
Magnetic chitosan/poly (vinyl alcohol) hydrogel beads	60.1		2.86x10 ⁻² at 30 mg L ⁻¹	68.86	[8]
Magnetic chicken bone- based biochar	328		4.9x10 ⁻³ at 100 mg L ⁻¹	63.3	[9]
Chitosan-based magnetic composite particles	8.48	Tetracycline	5.25×10^{5} at 100 mg L ⁻¹	67.1	[10]
Magnetic carbon composites from bagasse	43.29		7.52x10 ⁻⁴ at 80 mg L ⁻¹	48.35	[¹¹]
Magnetic carbon adsorbent from water hyacinth	072 56	Methylene blue	9.14x10 ⁻⁵ at 500 mg L ⁻¹	524.20	
	373.30	Methyl orange	2.73x10 ⁻⁴ at 500 mg L ⁻¹	425.15	This work
		Tetracycline	2.82×10^{-4} at 200 mg L ⁻¹	294.24	

Fig. S5. Chemical structures of adsorbate molecules: (a) TC (b) MB and (c) MO

Fig. S6 SEM images of CLP+KOH-800 using different magnifications

Fig. S7 Raman spectrum of CLP+KOH-800

Equations to calculate capacitance from CVs, GCDs

$$C_{CV} = \frac{4.I}{\nu . X}$$

$$C_{GCD} = \frac{4.Q}{(\Delta V - IR_{drop}) . X}$$

$$C_{EIS} = \frac{4.|Z''(\omega)|}{2\pi \omega (Z'(\omega)^2 + Z''(\omega)^2) . X}$$

$$(eq S1)$$

$$(eq S2)$$

$$(eq S2)$$

$$(eq S3)$$

The following notations are used: I(mA) current, v(mV/s) scan rate of the cyclovoltammograms, Q(C) the charge accumulated in the porous material calculated during the discharge cycle, $\Delta V(V)$ is the voltage window, IR_{drop} (V) is the voltage drop observed when the current is reverse during GCD, $\omega(Hz)$ is the frequency, Z'(Ω) and Z"(Ω) the real and imaginary parts of the impedance and X the specific parameter. X is the mass of the working electrode in grams in case of gravimetric capacitance and volume of working electrode in cm³ in case of volumetric capacitance.

Fig. S8 Electrochemical tests in 6M KOH. (a) Capability of the material calculated from the galvanostatic charge/discharge curves (GCDs); (b,c,d) Simultaneous polarization of the working and the counter electrodes during GCDs at respectively 0.1, 10 and 100 A g⁻¹.

References

- 1 M. Karthik, E. Redondo, E. Goikolea, V. Roddatis, S. Doppiu and R. Mysyk, *J. Phys. Chem. C*, 2014, **118**, 27715–27720.
- 2 M. Ruthiraan, E. C. Abdullah, N. M. Mubarak and M. N. Noraini, *J. Environ. Chem. Eng.*, 2017, **5**, 1447–1455.
- 3 H. Ma, J. B. Li, W. W. Liu, M. Miao, B. J. Cheng and S. W. Zhu, *Bioresour. Technol.*, 2015, **190**, 13–20.
- 4 S. Z. Guo, H. C. Xu, F. Zhang, X. X. Zhu and X. L. Li, *Colloids Surfaces a-Physicochemical Eng. Asp.*, 2018, **546**, 244–253.
- 5 B. W. Yu, X. L. Zhang, J. R. Xie, R. H. Wu, X. Y. Liu, H. L. Li, F. Chen, H. Yang, Z. Ming and S. T. Yang, *Appl. Surf. Sci.*, 2015, **351**, 765–771.
- 6 X. G. Huang, X. Z. Zhan, C. L. Wen, F. Xu and L. J. Luo, *J. Mater. Sci. Technol.*, 2018, **34**, 855–863.
- 7 W. L. Shi, F. Guo, H. B. Wang, C. G. Liu, Y. J. Fu, S. L. Yuan, H. Huang, Y. Liu and Z. H. Kang, *Appl. Surf. Sci.*, 2018, **433**, 790–797.
- 8 W. B. Wang, H. X. Zhang, J. F. Shen and M. X. Ye, *Colloids Surfaces a-Physicochemical Eng. Asp.*, 2018, **553**, 672–680.
- 9 A. A. Oladipo, A. O. Ifebajo, N. Nisar and O. A. Ajayi, *Water Sci. Technol.*, 2017, **76**, 373–385.
- 10 S. P. Zhang, Y. Y. Dong, Z. Yang, W. B. Yang, J. Q. Wu and C. Dong, *Chem. Eng. J.*, 2016, **304**, 325–334.
- 11 N. Rattanachueskul, A. Saning, S. Kaowphong, N. Chumha and L. Chuenchom, *Bioresour. Technol.*, 2017, **226**, 164–172.