Copper-catalysed enantioselective intramolecular etherification

of propargylic esters: Synthetic approach to chiral isochromans

Shiyao Liu,^[a] Kazunari Nakajima,^[b] and Yoshiaki Nishibayashi*^[a]

 ^[a] Department of Systems Innovation, School of Engineering, The University of Tokyo, Hongo, Bunkyoku, Tokyo, 113-8656 (Japan)
 ^[b] Frontier Research Centre for Energy and Resources, School of Engineering, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo, 113-8656 (Japan)

List of Contents of Supporting Information

1.	General Methods	Page S2
2.	General Procedure for the Preparation of Propargylic Acetates	Page S3
3.	Spectroscopic Data of Other Propargylic Acetates	. Page S6
4.	Enantioselective Intramolecular Propargylic etherification of Propargylic Acetates	. Page S9
5.	Spectroscopic Data and Isolated Yields of Other Products	Page S10
6.	Preparation of (S)-1-benzyl-4-(isochroman-1-yl)-1H-1,2,3-triazole (3)	Page S14
7.	Preparation of (R)-1-((4-chlorophenyl)ethynyl)isochromane (4)	Page S15
8.	Preparation of (S)-1-benzyl-4-(7-chloroisochroman-1-yl)-1H-1,2,3-triazole (S16)	Page S15
9.	X-ray Diffraction Study of S16	Page S16
10.	References	Page S18
11.	¹ H and ¹³ C NMR Spectra	Page S19
12.	HPLC Charts	Page S52

General Methods.

¹H NMR (400 MHz) and ¹³C NMR (100 MHz) spectra were measured on a JEOL ECS400 400 MHz spectrometer using CDCl₃ as solvent. The data are reported as (s = singlet, d = doublet, dd = double doublet, dt = double triplet, t = triplet, q = quartet, br = broad, m = multiplet or unresolved, coupling constant(s) in Hz, integration). HPLC analyses were performed on Hitachi L-7100 and GL-7480 apparatuses equipped with a UV detector using 25 cm x 4.6 mm DAICEL Chiralpak OJ, OZ columns. Mass spectra were measured on a JEOL JMS-700 mass spectrometer. Specific rotations were measured on a JASCO DIP-1000 polarimeter. All reactions were carried out under dry nitrogen atmosphere. The synthesis of racemic products were carried out by using racemic Ph-pybox ligand at 60 °C. Commercially obtained reagents were used without further purification. All reactions were monitored by TLC with silica gel-coated plates. Solvents were dried by the usual methods, then distilled under N₂ and degassed before use. Optically pure pybox ligands L2, L5 are commercially available reagents. Optically pure pybox ligands L1^{S1}, L3^{S2}, L4^{S3} were prepared according to literature procedures. The absolute configuration of chiral derivative product S16 were determined by unequivocally according to the X-ray diffraction analysis, and the absolute configuration chiral alkynyl isochromans 2 were deduced on the basis of this result.

General Procedure for the Preparation of Propargylic Acetates.

Scheme S1 Preparation of propargylic acetate 1a

A typical experimental procedure for the preparation of 1-(2-(2-hydroxyethyl)phenyl)prop-2-yn-1-yl acetate **1a** is described below. In a 50 mL Schlenk flask were placed (methoxymethyl)triphenylphosphoniumcChloride (3.43 g, 10.0 mmol) and anhydrous THF (20 mL) under N₂ atmosphere and cooled down the solution to 0 °C. To the solution, *n*BuLi (1.57 M in hexane, 4.8 mL, 7.5 mmol) was added dropwise and the mixture was stirred at 0 °C for 1 h. 2-Bromobenzaldehyde was added to this solution by portion and the mixture was warmed to room temperature and stirred for another 6 h. After the reaction, mixture was quenched by saturated NH₄Cl aq., and the solution was extracted with CH₂Cl₂ (10 ml X 3). The combined organic layers were dried over anhydrous Na₂SO₄ and concentrated under reduced pressure. The residue was passed through a short column chromatography with hexane/ethyl acetate (50:1) to give 1-bromo-2-(2-methoxyvinyl)benzene (**S1**) as an E/Z mixture (8.5 mmol, 85% isolated yield).

In a 50 mL Schlenk flask were placed **S1** (8.00 mmol) and anhydrous THF (20 mL) under N₂ atmosphere. The solution was cooled down to -78 °C. *n*BuLi (1.57 M in hexane, 7.60 mL, 12.0 mmol) was added dropwise and the mixture was stirred at 0 °C for 1 h. Anhydrous DMF (1.20 mL, 16.0 mmol) was added to the solution, and the mixture was warmed to room temperature and stirred for another 2 h. After the reaction, mixture was quenched by saturated NH₄Cl aq., and the solution was extracted with CH₂Cl₂ (10 mL X 3). The combined organic layers were dried over anhydrous Na₂SO₄ and concentrated under reduced pressure. The residue was purified by column chromatography with hexane/EtOAc (50:1-30:1) to give 2-(2-methoxyvinyl)benzaldehyde (**S2**) as an E/Z mixture (6.10 mmol, 76% isolated yield).

To a solution of **S2** (6.00 mmol) in anhydrous THF (15 mL) was added ethynylmagnesium bromide (0.5 M in THF, 18.0 mL, 9.00 mmol) at 0 °C and the mixture was stirred for 1 h. Acetic anhydride (1.10 mL, 12.0 mmol) was added to the solution and the mixture was allowed to warm to room temperature. After stirring for 2 h, the mixture was quenched by saturated NH₄Cl aq., and the solution was extracted with CH₂Cl₂ (10 mL X 3). The combined organic layers were dried over anhydrous Na₂SO₄ and concentrated under reduced pressure. The residue was dissolved in 10 mL acetone, and 6M HCl (2.00 mL, 12.0 mmol) was added to the solution at room temperature. The reaction was monitored by TLC until the starting material vanished. After the reaction, the solution was diluted by H₂O and extracted with CH₂Cl₂ (10 mL X 3). The combined organic layers were dried over anhydrous Na_2SO_4 and concentrated under reduced pressure. The residue was purified by column chromatography with hexane/EtOAc (20:1-10:1) to give 1-(2-(2-oxoethyl)phenyl)prop-2-yn-1-yl acetate (**S3a**) as a yellow oil (4.90 mmol, 82% isolated yield).

S3a (865 mg, 4.00 mmol) was dissolved in 10 mL MeOH, and the solution was cooled down to 0 °C. NaBH₄ (182 mg, 4.80 mmol) was added to the solution and the mixture was stirred for 1 h at 0 °C. After the reaction, the solution was diluted by H₂O and extracted with CH₂Cl₂ (10 mL X 3). The combined organic layers were dried over anhydrous Na₂SO₄ and concentrated under reduced pressure. The residue was purified by column chromatography with hexane/EtOAc (10:1-4:1) to give 1-(2-(2-hydroxyethyl)phenyl)prop-2-yn-1-yl acetate (**1a**) as a pale yellow oil (3.5 mmol, 88% isolated yield). ¹H NMR δ 7.62 (d, J = 7.2 Hz, 1H), 7.27-7.20 (m, 3H), 6.61 (d, J = 2.4 Hz, 1H), 3.78 (t, J = 6.8 Hz, 2H), 3.01-2.90 (m, 3H), 2.65 (d, J = 2.4 Hz, 1H), 2.04 (s, 3H). ¹³C NMR δ 169.6, 136.5, 134.8, 130.3, 129.0, 128.1, 126.7, 80.2, 75.5, 62.80, 62.77, 35.3, 20.7. HRMS (FAB) Calcd. for C₁₃H₁₄NaO₃ [M+Na]: 241.0841. Found: 241.0840.

Substrates **1b**, **1c**, **1d**, **1e**, **1g**, **1h**, **1i**, **1k**, **1l**, **1m** were synthesized by using various substituted halogen benzaldehydes, as a similar method as the synthesis of **1a**.

Scheme S2 Preparation of propargylic acetate 1f

In a 50 mL Schlenk flask were placed 2-bromo-4,5-difluorobenzoic acid (1.19 g, 5.00 mmol) anhydrous THF (20 mL) under N₂ atmosphere. The solution was cooled down to 0 °C. LiAlH₄ (285 mg, 7.50 mmol) was added by portion and the mixture was stirred at 0 °C for 1.5 h. The mixture was quenched saturated NH₄Cl aq., and the suspension was filtered through a celite pad. Then the filtrate was extracted with EtOAc (10 mL X 3). The combined organic layers were dried over anhydrous Na₂SO₄ and concentrated under reduced pressure. Crude (2-bromo-4,5-difluoro) benzylic alcohol (**S4**) was used to the next step without further purification.

To a solution of **S4** in 20 mL CH_2Cl_2 , Dess-Martin periodinane (2.54 g, 6.00 mmol) was added. The mixture was stirred for 1 h at room temperature. After the reaction, the solution was diluted by H_2O and extracted with CH_2Cl_2 (10 mL X 3). The combined organic layers were dried over anhydrous Na_2SO_4 and concentrated under reduced pressure. The residue was purified by column chromatography with hexane/ethyl acetate (50:1-40:1) to give the corresponding 2-bromo-4,5-difluorobenzaldehyde (**S5**).

1f was synthesized from **S5**, as a similar method as the synthesis of **1a** (0.60 mmol, 12% total yield). A pale yellow oil. ¹H NMR δ 7.46 (dd, J = 11.2 Hz, 8.0 Hz, 1H), 7.07 (dd, J = 11.2 Hz, 8.0 Hz, 1H), 6.54 (d, J = 2.0 Hz, 1H), 3.84 (t, J = 6.4 Hz, 2H), 3.00-2.82 (m, 2H), 2.65 (d, J = 2.0 Hz, 1H), 2.10 (s, 3H), 1.79 (br, 1H). ¹³C NMR δ 169.5, 150.3 (dd, ¹J_{C-F} = 250 Hz and ²J_{C-F} = 12.4 Hz), 149.0 (dd, ¹J_{C-F} = 250 Hz and ²J_{C-F} = 12.4 Hz), 133.8 (dd, ³J_{C-F} = 5.7 Hz and ⁴J_{C-F} = 3.8 Hz), 132.0 (t, ³J_{C-F} = ⁴J_{C-F} = 4.3 Hz), 119.0 (d, ²J_{C-F} = 17.1 Hz), 117.3 (d, ²J_{C-F} = 18.1 Hz), 79.7, 75.9, 62.8, 61.9,

34.7, 20.8. HRMS (EI) Calcd. for C₁₃H₁₂F₂O₃ [M]: 254.0755. Found: 254.0760.

Scheme S3 Preparation of propargylic acetate 1j

2-(2-Bromo-4-methoxyphenyl)acetaldehyde (S6) was synthesized from the 2-(2-bromo-4 methoxyphenyl)acetic acid as a similar method as the synthesis of S5. To the solution of crude S6 (5.00 mmol) in 30 mL MeOH, trimethyl orthoformate (1.60 mL, 15.0 mmol) and TsOH.H₂O (19.0 mg, 0.10 mmol) were added. The mixture was stirred at 50 °C for 3 h. After the reaction, the resulting mixture was evaporated in vacuo and the residue was purified by silica gel column to give 2-bromo-1-(2,2-dimethoxyethyl)-4-methoxybenzene S7 (4.75 mmol, 95% yield).

1-(2-(2-hydroxyethyl)-5-methoxyphenyl)prop-2-yn-1-yl acetate **1j** was synthesized from **S7** as a similar method as the synthesis of **1a** (0.80 mmol, 17% total yield from **S7**). A pale yellow oil. ¹H NMR δ 7.19 (d, J = 2.8 Hz, 1H), 7.15 (d, J = 9.0 Hz, 1H), 6.87 (dd, J = 9.0 Hz, 2.8 Hz, 1H), 6.59 (d, J = 2.4 Hz, 1H), 3.83-3.79 (m, 5H), 2.98-2.84 (m, 2H), 2.64 (d, J = 2.4 Hz, 1H), 2.10 (s, 3H), 2.00 (br, 1H). ¹³C NMR δ 169.6, 158.4, 136.2, 131.6, 128.4, 114.7, 113.6, 80.3, 75.5, 63.3, 62.9, 55.3, 34.8, 20.9. HRMS(EI) Calcd. for C₁₄H₁₆O₄ [M]: 248.1049. Found: 248.1052.

1-(2-(hydroxymethyl)phenyl)prop-2-yn-1-yl acetate **5** was synthesized from **S9**^{s4} (6.00 mmol) as a similar method as the synthesis of **1a** (1.60 mmol, 27% total yield). A pale yellow oil.¹H NMR δ 7.73-7.70 (m, 1H), 7.44-7.31 (m, 3H), 5.69-5.68 (m, 1H), 5.35 (d, J = 12.8 Hz, 1H), 5.26 (d, J = 12.8 Hz, 1H), 3.31 (d, J = 5.4 Hz, 1H), 2.67 (d, J = 2.4 Hz, 1H), 2.08 (s, 3H). ¹³C NMR δ 171.0, 138.3, 133.4, 129.9, 128.8, 128.7, 127.4, 83.1, 75.0, 63.7, 61.8, 20.9. HRMS (EI) Calcd. for C₁₂H₁₂O₃ [M]: 204.0786. Found: 204.0784.

Scheme S5 Preparation of propargylic acetate 6

1-(2-(3-Hydroxypropyl)phenyl)prop-2-yn-1-yl acetate **6** was synthesized from **S12**^{s5} (6.00 mmol) according to a similar method as the synthesis of **1a** (0.90 mmol, 15% total yield). ¹H NMR δ 7.63 (dd, J = 7.2 Hz, 1.2 Hz, 1H), 7.32-7.19 (m, 3H), 6.63 (d, J = 2.2 Hz, 1H), 3.67 (t, J = 6.4 Hz, 2H), 2.85-2.77 (m, 2H), 2.62 (d, J = 2.2 Hz, 1H), 2.10 (s, 3H), 2.00 (br, 1H). 1.91-1.82 (m, 2H). ¹³C NMR δ 169.7, 139.8, 134.4, 129.8, 129.2, 128.2, 126.5, 80.5, 75.3, 62.7, 61.9, 34.0, 28.3, 21.0. HRMS (EI) Calcd. for $C_{14}H_{16}O_3$ [M]: 232.1099. Found: 232.1091.

Spectroscopic Data of Other Propargylic Acetates

1-(5-fluoro-2-(2-hydroxyethyl)phenyl)prop-2-yn-1-yl acetate (1b) : a pale yellow oil. ¹H NMR δ 7.33 (dd, J = 9.6 Hz, 2.6Hz, 1H), 7.18 (dd, J = 8.2 Hz, 6.0 Hz, 1H), 6.98 (td, J = 8.2 Hz, 2.6 Hz, 1H), 6.56 (d, J = 2.4 Hz, 1H), 3.78 (t, J = 6.8 Hz, 2H), 2.96-2.84 (m, 2H), 2.64 (d, J = 2.4 Hz, 1H), 2.42 (br, 1H), 2.08 (s, 3H). ¹³C NMR δ 169.6, 161.5 (d, ¹J_{C-F} = 244 Hz), 137.1 (d, ³J_{C-F} = 6.7 Hz), 132.1 (d, ⁴J_{C-F} = 2.9 Hz), 132.0 (d, ³J_{C-F} = 6.6 Hz), 116.0 (d, ²J_{C-F} = 21 Hz), 114.8 (d, ²J_{C-F} = 23 Hz), 79.8, 75.8, 62.9, 62.3, 34.8, 20.8. HRMS (EI) Calcd. for C₁₃H₁₃FO₃ [M]: 236.0849. Found: 236.0857.

1-(4-fluoro-2-(2-hydroxyethyl)phenyl)prop-2-yn-1-yl acetate (1c) : a pale yellow oil. ¹H NMR δ 7.64 (dd, J = 9.6 Hz, 5.6 Hz, 1H), 7.00-6.95 (m, 2H), 6.60 (d, J = 2.4 Hz, 1H), 3.89 (t, J =

6.4 Hz, 2H), 3.06-2.93 (m, 2H), 2.65 (d, J = 2.4 Hz, 1H), 2.11 (s, 3H), 1.69 (br, 1H). ¹³C NMR δ 169.7, 162.9 (d, ¹J_{C-F} = 247 Hz), 139.5 (d, ³J_{C-F} = 7.7 Hz), 131.1 (d, ⁴J_{C-F} = 1.9 Hz), 130.5 (d, ³J_{C-F} = 8.6 Hz), 117.0 (d, ²J_{C-F} = 21 Hz), 113.9 (d, ²J_{C-F} = 22 Hz), 80.3, 75.6, 62.8, 62.4, 35.4, 20.9. HRMS (EI) Calcd. for C₁₃H₁₃FO₃ [M]: 236.0849. Found: 236.0844.

1-(3-fluoro-2-(2-hydroxyethyl)phenyl)prop-2-yn-1-yl acetate (1d): a pale yellow oil. ¹H NMR δ 7.44 (d, J = 8.0 Hz, 1H), 7.31-7.24 (m, 1H), 7.07 (t, J = 9.0 Hz, 1H), 6.66 (d, J = 2.2 Hz, 1H), 3.87 (t, J = 6.8 Hz, 2H), 3.11-3.04 (m, 2H), 2.66 (d, J = 2.2 Hz, 1H), 2.13 (s, 3H), 1.75 (br, 1H). ¹³C NMR δ 169.6, 161.5 (d, ¹J_{C-F} = 244 Hz), 137.8 (d, ³J_{C-F} = 3.8 Hz), 128.2 (d, ³J_{C-F} = 9.5 Hz), 124.4 (d, ²J_{C-F} = 16.2 Hz), 123.8 (d, ⁴J_{C-F} = 2.9 Hz), 116.0 (d, ²J_{C-F} = 22.9 Hz), 80.1, 75.7, 62.8 (d, ⁴J_{C-F} = 3.8 Hz), 62.3, 28.8, 21.0. HRMS (EI) Calcd. for C₁₃H₁₃FO₃ [M]: 236.0849. Found: 236.0842.

1-(2-(2-hydroxyethyl)-4-(trifluoromethyl)phenyl)prop-2-yn-1-yl acetate (1e): a pale yellow oil. ¹H NMR δ 7.75 (d, J = 7.6 Hz, 1H), 7.54-7.50 (m, 2H), 6.67 (s, 1H), 3.88 (t, J = 6.8 Hz, 2H), 3.13-3.00 (m, 2H), 2.67 (d, J = 2.0 Hz, 1H), 2.30 (br, 1H), 2.11 (s, 3H). ¹³C NMR δ 169.6, 139.1 137.7, 131.2 (q, ²J_{C-F} = 32 Hz), 128.5, 127.2 (q, ³J_{C-F} = 3.8 Hz), 123.8 (q, ³J_{C-F} = 3.8 Hz), 123.8 (q, ¹J_{C-F} = 271 Hz), 79.7, 76.1, 62.7, 62.4, 35.4, 20.8. HRMS (FAB) Calcd. for C₁₄H₁₃F₃NaO₃ [M+Na]: 309.0714. Found: 309.0715.

1-(2-(2-hydroxyethyl)-5-methylphenyl)prop-2-yn-1-yl acetate (1g): a pale yellow oil. ¹H NMR δ 7.44 (s, 1H), 7.12 (s, 2H), 6.60 (d, J = 2.0 Hz, 1H), 3.80 (t, J = 6.4 Hz, 2H), 3.03-2.87 (m, 2H), 2.64 (d, J = 2.0 Hz, 1H), 2.34 (s, 3H), 2.30 (br, 1H), 2.09 (s, 3H). ¹³C NMR δ 169.6, 136.6, 134.7, 133.4, 130.4, 129.9, 128.8, 80.5, 75.4, 63.2, 62.9, 35.1, 20.9. HRMS (EI) Calcd. for C₁₄H₁₆O₃ [M]: 232.1099. Found: 232.1099.

1-(2-(2-hydroxyethyl)-4-methylphenyl)prop-2-yn-1-yl acetate (1h): a pale yellow oil. ¹H NMR δ 7.54 (d, J = 7.6 Hz, 1H), 7.10 (d, J = 7.6 Hz, 1H), 7.07 (s, 1H), 6.61 (d, J = 2.2 Hz, 1H), 3.85 (t, J = 6.4 Hz, 2H), 3.06-2.88 (m, 2H), 2.63 (d, J = 2.2 Hz, 1H), 2.34 (s, 3H), 2.09 (br, 4H). ¹³C NMR δ 169.7, 139.1, 136.4, 132.2, 131.1, 128.4, 127.8, 80.6, 75.3, 63.3, 62.9, 35.5, 21.0, 20.9. HRMS (FAB) Calcd. for C₁₄H₁₆NaO₃ [M+Na]: 255.0997. Found: 255.0998.

1-(2-(2-hydroxyethyl)-4,5-dimethylphenyl)prop-2-yn-1-yl acetate (1i): a pale yellow oil. ¹H NMR δ 7.42 (s, 1H), 7.03 (s, 1H), 6.60 (d, J = 2.2 Hz, 1H), 3.82 (t, J = 6.8 Hz, 2H), 3.04-2.86 (m, 2H), 2.66 (d, J = 2.2 Hz, 1H), 2.42 (br, 1H), 2.26 (s, 3H), 2.25 (s, 3H), 2.10 (s, 3H). ¹³C NMR δ 169.6, 137.7, 135.2, 133.7, 132.2, 131.7, 129.5, 80.6, 75.2, 63.2, 62.8, 35.0, 20.8, 19.3, 19.1. HRMS (EI) Calcd. for C₁₅H₁₈O₃ [M]: 246.1256. Found: 246.1263.

1-(2-(2-hydroxyethyl)-6-methylphenyl)prop-2-yn-1-yl acetate (1k): a pale yellow oil. ¹H NMR δ 7.20 (t, J = 7.2 Hz, 1H), 7.12-7.08 (m, 2H), 6.90 (d, J = 2.2 Hz, 1H), 3.93-3.83 (m, 2H), 3.30-3.24 (m, 1H), 3.10-3.03 (m, 1H), 2.61 (d, J = 2.2 Hz, 1H), 2.58 (s, 3H), 2.09 (s, 3H), 1.86 (br, 1H). ¹³C NMR δ 169.6, 138.0, 137.5, 133.3, 130.0, 128.9, 128.8, 80.2, 75.0, 63.6, 61.2, 36.7, 20.9, 20.4. HRMS (FAB) Calcd. for C₁₄H₁₆NaO₃ [M+Na]: 255.0997. Found: 255.0992.

1-(5-chloro-2-(2-hydroxyethyl)phenyl)prop-2-yn-1-yl acetate (1l): a pale yellow oil. ¹H NMR δ 7.63 (d, J = 2.2 Hz, 1H), 7.28 (dd, J = 8.4 Hz, 2.2 Hz, 1H), 7.19 (d, J = 8.4 Hz, 1H), 6.59 (d, J = 2.2 Hz, 1H), 3.84 (t, J = 2.4 Hz, 2H), 3.02-2.90 (m, 2H), 2.67 (d, J = 2.2 Hz, 1H), 2.13 (s, 3H), 2.01 (br, 1H). ¹³C NMR δ 169.6, 137.0, 135.0, 132.8, 131.8, 129.2, 128.1, 79.8, 75.9, 63.0, 62.3, 35.0,

20.9. HRMS (FAB) Calcd. for C₁₃H₁₃ClO₃ [M]: 252.0553. Found: 252.0557.

1-(2-(2-hydroxyethyl)naphthalen-1-yl)prop-2-yn-1-yl acetate (1m): a pale yellow oil. ¹H NMR δ 8.66 (d, J = 8.8 Hz, 1H), 7.83 (d, J = 8.0 Hz, 1H), 7.79 (d, J = 8.8 Hz, 1H), 7.60-7.55 (m, 1H), 7.50-7.45 (m, 1H), 7.35-7.29 (m, 2H), 3.93 (t, J = 6.4 Hz, 2H), 3.44-3.39 (m, 1H), 3.20-3.10 (m, 1H), 2.67 (d, J = 2.4 Hz, 1H) 2.21 (br, 1H), 2.06 (s, 3H). ¹³C NMR δ 169.8, 135.5, 133.2, 131.1, 130.0, 129.9, 128.52, 128.48, 126.2, 125.7, 125.4, 80.8, 75.8, 63.4, 61.2, 37.3, 20.8. HRMS (EI) Calcd. for C₁₇H₁₆O₃ [M]: 268.1099. Found: 268.1093.

Enantioselective Intramolecular Propargylic Etherification of Propargylic Acetates.

A typical experimental procedure for the reaction of 1-(2-(2-hydroxyethyl)phenyl)prop-2-yn-1-yl acetate (1a) is described below. In an oven dried 20 mL Schlenk flask were placed CuOTf.1/2C₆H₆ (1.3 mg, 0.005 mmol) and (*S*,*S*)-Ph-pybox (**L5**) (3.7 mg, 0.01 mmol) under N₂. Anhydrous methanol (1.0 mL) was added, and then the mixture was magnetically stirred at 60 °C for 1 h. After the solution was cooled to -20 °C, 1a (21.8 mg, 0.10 mmol) in anhydrous methanol (1.5 mL) and K_2CO_3 (17 mg, 0.12 mmol) were added under N_2 , and the reaction mixture was kept at -20 $^{\circ}$ C for 51 h. The mixture was diluted by H₂O (10 mL) and extracted with CH₂Cl₂ (10 mL X 3). The combined organic layers were dried over anhydrous Na₂SO₄ and concentrated under reduced pressure with caution. The residue was purified by the column chromatography (SiO₂) with hexane/Et₂O (50:1-40:1) to give 1-ethynylisochromane (2a) as a pale yellow oil (14.1 mg, 0.089 mmol, 89% isolated yield). ¹H NMR δ 7.27-7.18 (m, 3H), 7.15-7.10 (m, 1H), 5.55 (s, 1H), 4.26-4.20 (m, 1H), 4.01-3.95 (m, 1H), 2.94-2.80 (m, 2H), 2.56 (s, 1H). ¹³C NMR δ 134.3, 132.7, 129.0, 127.3, 126.4, 125.8, 82.8, 73.8, 66.4, 62.4, 27.9. HRMS (EI) Calcd. for $C_{11}H_{10}O$ [M]: 158.0732. Found: 158.0731. [α]²¹_D = +26.6 (c = 0.50, CHCl₃). The enantiomeric excess of 2a was determined by HPLC analysis; DAICEL Chiralpak OJ-H, hexane/iPrOH = 95/5, flow rate = 0.5 mL/min, λ = 220 nm, retention time: 18.6 min (major) and 26.0 min (minor), 93% ee.

Spectroscopic Data and Isolated Yields of Other Products.

1-ethynyl-7-fluoroisochromane (2b): Isolated yield 90%. A pale yellow oil. ¹H NMR δ 7.08 (dd J = 8.6 Hz, 6.0 Hz, 1H), 6.98 (dd J = 9.2 Hz, 2.4 Hz, 1H), 6.27 (td, J = 8.6 Hz, 2.4 Hz, 1H), 5.50 (s, 1H), 4.24-4.17 (m, 1H), 4.01-3.93 (m, 1H), 2.90-2.75 (m, 2H), 2.57 (d, J = 2.4 Hz, 1H). ¹³C NMR δ 161.2 (d, ¹J_{C-F} = 246 Hz), 136.0 (d, ³J_{C-F} = 6.7 Hz), 130.4 (d, ³J_{C-F} = 6.6 Hz), 128.3 (d, ⁴J_{C-F} = 2.9 Hz), 114.7 (d, ²J_{C-F} = 21 Hz), 112.5 (d, ²J_{C-F} = 23 Hz), 82.1, 74.2, 66.3, 62.6, 27.2. HRMS (EI) Calcd. for C₁₁H₉FO [M]: 176.0637. Found: 176.0636. [α]²²_D = +49.6 (c = 0.32, CHCl₃). The enantiomeric excess of **2b** was determined by HPLC analysis; DAICEL Chiralpak OJ-H, hexane/iPrOH = 95/5, flow rate = 0.5 mL/min, λ = 220 nm, retention time: 17.3 min (major) and 18.5 min (minor), 87% ee.

1-ethynyl-6-fluoroisochromane (2c): Isolated yield 75%. A pale yellow oil. ¹H NMR δ 7.22 (dd, J = 8.3 Hz, 5.2 Hz, 1H), 6.92 (td, J = 8.3Hz, 2.6 Hz, 1H), 6.81 (dd, J = 9.6 Hz, 2.6 Hz, 1H), 5.50 (s, 1H), 4.24-4.17 (m, 1H), 4.00-3.93 (m, 1H), 2.95-2.77 (m, 2H), 2.57 (d, J = 2.0 Hz, 1H). ¹³C NMR δ 161.8 (d, ¹J_{C-F} = 245 Hz), 135.0 (d, ³J_{C-F} = 7.6 Hz), 130.0 (d, ⁴J_{C-F} = 2.9 Hz), 127.5 (d, ³J_{C-F} = 8.6 Hz), 115.3 (d, ²J_{C-F} = 22 Hz), 113.7 (d, ²J_{C-F} = 22 Hz), 82.6, 74.1, 66.1, 62.0, 28.0. HRMS (EI) Calcd. for C₁₁H₉FO [M]: 176.0637. Found: 176.0630. [α]²¹_D = +47.7 (c = 0.27, CHCl₃). The enantiomeric excess of **2c** was determined by HPLC analysis; DAICEL Chiralpak OZ-H, hexane/iPrOH = 95/5, flow rate = 0.5 mL/min, λ = 220 nm, retention time: 9.9 min (major) and 10.6 min (minor), 94% ee.

1-ethynyl-5-fluoroisochromane (2d): Isolated yield 65%. A pale yellow oil. ¹H NMR δ 7.20 (dd J = 13.2 Hz, 8.1 Hz, 1H), 7.06 (d, J = 8.1 Hz, 1H), 6.95 (t, J = 8.1 Hz, 1H), 5.53 (s, 1H), 4.27-4.19 (m, 1H), 4.04-3.97 (m, 1H), 2.83 (t, J = 6.0, 2H), 2.58 (d, J = 2.8 Hz, 1H). ¹³C NMR δ 160.3 (d, ¹J_{C-F} = 244 Hz), 136.4 (d, ³J_{C-F} = 4.8 Hz), 127.2 (d, ³J_{C-F} = 8.5 Hz), 121.2 (d, ⁴J_{C-F} = 2.9 Hz), 120.7 (d, ²J_{C-F} = 19 Hz), 113.6 (d, ²J_{C-F} = 21 Hz), 82.2, 74.3, 65.9 (d, ⁴J_{C-F} = 2.8 Hz), 61.6, 21.3 (d, ³J_{C-F} = 2.8 Hz)

2.9 Hz). HRMS (EI) Calcd. for C₁₁H₉FO [M]: 176.0637. Found: 176.0640. $[\alpha]^{22}_{D}$ = +34.1 (c = 0.57, CHCl₃). The enantiomeric excess of **2d** was determined by HPLC analysis; DAICEL Chiralpak OJ-H, hexane/iPrOH = 95/5, flow rate = 0.5 mL/min, λ = 220 nm, retention time: 17.8 min (major) and 19.2 min (minor), 89% ee.

1-ethynyl-6-(trifluoromethyl)isochromane (2e): Isolated yield 87%. A pale yellow oil. ¹H NMR δ 7.47 (d, J = 7.6 Hz, 1H), 7.40-7.36 (m, 2H), 5.57 (s, 1H), 4.28-4.21 (m, 1H), 4.05-3.98 (m, 1H), 3.02-2.83 (m, 2H), 2.59 (d, J = 2.4 Hz, 1H). ¹³C NMR δ 138.2, 133.6, 129.7 (d, ²J_{C-F} = 32 Hz), 126.4, 126.0 (d, ³J_{C-F} = 3.8 Hz), 123.9 (d, ¹J_{C-F} = 272 Hz), 123.2 (d, ³J_{C-F} = 3.9 Hz), 82.0, 74.6, 66.3, 62.0, 27.8. HRMS (EI) Calcd. for C₁₂H₉F₃O [M]: 226.0605. Found: 226.0601. [α]²²_D = +27.5 (c = 0.50, CHCl₃). The enantiomeric excess of **2e** was determined by HPLC analysis; DAICEL Chiralpak OZ-H, hexane/iPrOH = 95/5, flow rate = 0.5 mL/min, λ = 220 nm, retention time: 9.09 min (major) and 9.94 min (minor), 93% ee.

1-ethynyl-6,7-difluoroisochromane (2f): Isolated yield 51%. A pale yellow oil. ¹H NMR δ 7.08 (dd, J = 10.4 Hz, 7.6 Hz, 1H), 5.46 (s, 1H), 4.23-4.15 (m, 1H), 4.00-3.92 (m, 1H), 2.89-2.73 (m, 2H), 2.59 (d, J = 2.4 Hz, 1H). ¹³C NMR δ 149.6 (dd, ¹J_{C-F} = 247 Hz and ²J_{C-F} = 12 Hz), 148.9 (dd, ¹J_{C-F} = 247 Hz and ²J_{C-F} = 11 Hz), 130.6 (t, ³J_{C-F} = ⁴J_{C-F} = 4.8 Hz), 129.3 (t, ³J_{C-F} = ⁴J_{C-F} = 5.7 Hz), 117.2 (d, ²J = 17.1 Hz), 114.6 (d, ²J = 18.1Hz), 81.9, 74.5, 65.8, 62.1, 27.2. HRMS (EI) Calcd. for C₁₁H₈F₂O [M]: 194.0543. Found: 194.0544. [α]²⁰_D = +34.5 (c = 0.35, CHCl₃). The enantiomeric excess of **2f** was determined by HPLC analysis; DAICEL Chiralpak OJ-H, hexane/iPrOH = 95/5, flow rate = 0.5 mL/min, λ = 220 nm, retention time: 18.6 min (minor) and 19.6 min (major), 92% ee.

1-ethynyl-7-methylisochromane (2g): Isolated yield 75%. A pale yellow oil. ¹H NMR δ 7.08-7.00 (m, 3H), 5.52 (d, J = 2.0 Hz, 1H), 4.24-4.19 (m, 1H), 4.01-3.94 (m, 1H), 2.89-2.75 (m, 2H), 2.56 (d, J = 2.0 Hz, 1H), 2.33 (s, 3H). ¹³C NMR δ 136.0, 134.0, 129.6, 128.8, 128.2, 126.1, 83.0,

73.7, 66.4, 62.5, 27.5, 21.1. HRMS (EI) Calcd. for $C_{12}H_{12}O$ [M]: 172.0888. Found: 172.0894. [α]²²_D = +78.1 (c = 0.44, CHCl₃). The enantiomeric excess of **2g** was determined by HPLC analysis; DAICEL Chiralpak OJ-H, hexane/iPrOH = 95/5, flow rate = 0.5 mL/min, λ = 220 nm, retention time: 14.6 min (major) and 17.9 min (minor), 88% ee.

1-ethynyl-6-methylisochromane (2h): Isolated yield 90%. A pale yellow oil. ¹H NMR δ 7.15 (d, J = 7.5 Hz, 1H), 7.03 (d, J = 7.8 Hz, 1H), 6.94 (s, 1H), 5.52 (s, 1H), 4.25-4.18 (m, 1H), 4.00-3.92 (m, 1H), 2.93-2.73 (m, 2H), 2.54 (d, J = 2.4 Hz, 1H), 2.32 (s, 3H). ¹³C NMR δ 137.0, 132.5, 131.4, 129.4, 127.3, 125.7, 83.0, 73.7, 66.4, 62.4, 27.9, 21.1. HRMS (EI) Calcd. for C₁₂H₁₂O [M]: 172.0888. Found: 172.0885. [α]²¹_D = +42.0 (c = 0.37, CHCl₃). The enantiomeric excess of **2h** was determined by HPLC analysis; DAICEL Chiralpak OZ-H, hexane/iPrOH = 95/5, flow rate = 0.5 mL/min, λ = 220 nm, retention time: 9.67 min (major) and 10.8 min (minor), 91% ee.

1-ethynyl-6,7-dimethylisochromane (2i): Isolated yield 66%. A pale yellow oil. ¹H NMR δ 7.02 (s, 1H), 6.90 (s, 1H), 5.50 (s, 1H), 4.24-4.17 (m, 1H), 3.99-3.92 (m, 1H), 2.92-2.70 (m, 2H), 2.55 (d, J = 2.4 Hz, 1H), 2.24 (s, 3H), 2.23 (s, 3H). ¹³C NMR δ 135.8, 134.8, 131.6, 130.0, 129.9, 126.6, 83.2, 73.6, 66.2, 62.5, 27.4, 19.42, 19.40. HRMS (EI) Calcd. for C₁₃H₁₄O [M]: 186.1045. Found: 186.1051. $[\alpha]^{23}_{D}$ = +84.9 (c = 0.42, CHCl₃). The enantiomeric excess of **2i** was determined by HPLC analysis; DAICEL Chiralpak OZ-H, hexane/iPrOH = 95/5, flow rate = 0.5 mL/min, λ = 220 nm, retention time: 9.41 min (major) and 10.6 min (minor), 87% ee.

1-ethynyl-7-methoxyisochromane (2j): Isolated yield 72%. A pale yellow oil. ¹H NMR δ 7.06-7.02 (m, 1H), 6.82-6.77 (m, 2H), 5.51 (s, 1H), 4.24-4.17 (m, 1H), 4.00-3.94 (m, 1H), 3.80 (s, 3H), 2.89-2.72 (m, 2H), 2.56 (d, J = 2.0 Hz, 1H). ¹³C NMR δ 158.0, 135.2, 129.9, 124.7, 113.9, 110.4, 82.7, 73.8, 66.6, 62.7, 55.3, 27.1. HRMS (EI) Calcd. for $C_{12}H_{12}O_2$ [M]: 188.0837. Found: 188.0833. [α]²²_D = +45.0 (c = 0.47, CHCl₃). The enantiomeric excess of **2j** was determined by HPLC analysis; DAICEL Chiralpak OZ-H, hexane/iPrOH = 95/5, flow rate = 0.5 mL/min, λ = 220 nm, retention time: 12.7 min (major) and 13.6 min (minor), 93% ee.

1-ethynyl-8-methylisochromane (2k): Isolated yield 75%. A pale yellow oil. ¹H NMR δ 7.14 (t, J = 7.3 Hz, 1H), 7.02 (d, J = 7.3 Hz, 1H), 6.98 (d, J = 7.3 Hz, 1H), 5.50 (d, J = 2.0 Hz, 1H), 4.33-4.22 (m, 1H), 4.10-4.04 (m, 1H), 3.14-3.04 (m, 1H), 2.72-2.62 (m, 1H), 2.53 (d, J = 2.0 Hz, 1H), 2.33 (s, 3H). ¹³C NMR δ 134.3, 132.7, 132.4, 128.3, 127.2, 126.9, 81.8, 74.1, 64.3, 60.7, 27.9, 18.4. HRMS (EI) Calcd. for C₁₂H₁₂O [M]: 172.0888. Found: 172.0884. [α]²⁰_D = +18.6 (c = 0.60, CHCl₃). The enantiomeric excess of **2k** was determined by HPLC analysis; DAICEL Chiralpak OJ-H, hexane/iPrOH = 95/5, flow rate = 0.5 mL/min, λ = 220 nm, retention time: 13.2 min (major) and 14.9 min (minor), 80% ee.

7-chloro-1-ethynylisochromane (2l): Isolated yield 85%. A pale yellow oil. ¹H NMR δ 7.26 (s, 1H), 7.19 (dd, J = 8.4 Hz, 2.4 Hz, 1H), 7.06 (d, J = 8.4 Hz, 1H), 5.50 (s, 1H), 4.24-4.17 (m, 1H), 4.00-3.93 (m, 1H), 2.92-2.75 (m, 2H), 2.59 (d, J = 2.4 Hz, 1H). ¹³C NMR δ 136.0, 131.9, 131.2, 130.3, 127.6, 125.8, 82.1, 74.4, 66.1, 62.3, 27.3. HRMS (EI) Calcd. for C₁₁H₉ClO [M]: 192.0342. Found: 192.0346. $[\alpha]^{22}_{D}$ = +152.6 (c = 0.27, CHCl₃). The enantiomeric excess of **2I** was determined by HPLC analysis; DAICEL Chiralpak OJ-H, hexane/iPrOH = 95/5, flow rate = 0.5 mL/min, λ = 220 nm, retention time: 17.7 min (major) and 20.4 min (minor), 80% ee.

1-ethynyl-3,4-dihydro-1H-benzo[h]isochromene (2m): Isolated yield 57%. A pale yellow oil. ¹H NMR δ 7.97 (d, J = 8.4, 1H), 7.82 (d, J = 8.4, 1H), 7.73 (d, J = 8.6, 1H), 7.58-7.52 (m, 1H), 7.47 (td, J = 8.0 Hz, 1.2 Hz, 1H), 7.23 (d, J = 8.6 Hz, 1H), 6.05 (s, 1H), 4.46-4.36 (m, 1H), 4.21-4.15 (m, 1H), 3.27-3.20 (m, 1H), 2.83-2.75 (m, 1H), 2.58 (d, J = 2.0 Hz, 1H). ¹³C NMR δ 132.3, 130.4, 129.4, 128.9, 128.7, 127.9, 127.4, 126.5, 125.4, 122.4, 82.5, 74.7, 64.0, 60.7, 28.3. HRMS (EI) Calcd. for C₁₅H₁₂O [M]: 208.0888. Found: 208.0882. [α]²²_D = +83.3 (c = 0.51, CHCl₃). The enantiomeric excess of **2m** was determined by HPLC analysis; DAICEL Chiralpak OZ-H, hexane/iPrOH = 95/5, flow rate = 0.5 mL/min, λ = 220 nm, retention time: 9.96 min (major) and 11.8 min (minor), 83% ee.

1-ethynyl-1,3-dihydroisobenzofuran (7): Isolated yield 36% (with **L2**). A pale yellow oil. ¹H NMR δ 7.39-7.31 (m, 3H), 7.27-7.22 (m, 1H), 5.88 (s, 1H), 5.26 (dd, J = 12.2 Hz, 2.0 Hz, 1H), 5.10 (d, J = 12.2, 1H), 2.60 (d, J = 2.4 Hz, 1H). ¹³C NMR δ 138.8, 138.6, 128.3, 127.8, 121.7, 121.1, 82.0, 74.2, 73.1, 73.0. HRMS (EI) Calcd. for C₁₀H₈O [M]: 144.0575. Found: 144.0582. $[\alpha]^{21}_{D}$ = +119.2 (c = 0.14, CHCl₃). The enantiomeric excess of **7** was determined by HPLC analysis; DAICEL Chiralpak OJ-H, hexane/iPrOH = 95/5, flow rate = 0.5 mL/min, λ = 220 nm, retention time:20.8 min (major) and 27.5 min (minor), 68% ee.

1-ethynyl-1,3,4,5-tetrahydrobenzo[c]oxepine (8): Isolated yield 40% (with **L5**). A pale yellow oil. ¹H NMR δ 7.57-7.49 (m, 1H), 7.24-7.15 (m, 3H), 5.50 (d, J = 2.2 Hz, 1H), 4.45-4.39 (m, 1H), 4.04-3.97 (m, 1H), 3.15-3.11 (m, 1H), 3.03-2.95 (m, 1H), 2.81 (d, J = 2.2 Hz, 1H), 1.89-1.79 (m, 2H). ¹³C NMR δ 141.6, 138.7, 129.7, 128.4, 127.4, 126.3, 80.1, 77.5, 72.6, 72.4, 34.6, 29.8. HRMS (EI) Calcd. for C₁₂H₁₂O [M]: 172.0888. Found: 172.0884. [α]²²_D = -2.40 (c = 0.15, CHCl₃). The enantiomeric excess of **8** was determined by HPLC analysis; DAICEL Chiralpak OJ-H, hexane/*i*PrOH = 95/5, flow rate = 0.5 mL/min, λ = 220 nm, retention time:43.1 min (minor) and 52.5 min (major), 29% ee.

Preparation of (S)-1-benzyl-4-(isochroman-1-yl)-1H-1,2,3-triazole (3)

To a solution of **2a** (0.23 mmol) in anhydrous THF (4 mL) was added Benzyl azide (37.0 μL, 0.28 mmol), Cul (4.40 mg, 0.023 mmol), *i*Pr₂NEt (64.0 μL, 0.46 mmol). The mixture was stirred at 45 °C for 15 h. The mixture was concentrated under reduced pressure and purified by column chromatography with hexane/EtOAc (5:1-3:1) to give (*S*)-1-benzyl-4-(isochroman-1-yl)-1H-1,2,3-triazole **3** as a white solid (65.0 mg, 0.23 mmol, 98% isolated yield). ¹H NMR δ 7.36-7.00 (m, 10H), 6.05 (s, 1H), 5.51 (d, J = 14.8 Hz, 1H), 5.44 (d, J = 14.8 Hz, 1H), 4.16-4.10 (m, 1H), 3.96-3.88 (m, 1H), 3.05-2.96 (m, 1H), 2.84-2.76 (m, 1H). ¹³C NMR δ 150.0, 135.7, 134.4, 133.4, 129.0, 128.8, 128.7, 128.1, 126.9, 126.3, 126.1, 122.0, 71.7, 63.6, 54.2, 28.5. HRMS (EI) Calcd.

for C₁₈H₁₇N₃O [M]: 291.1372. Found: 291.1383. $[\alpha]^{24}_{D}$ = +71.3 (c = 0.50, CHCl₃). The enantiomeric excess of **3** was determined by HPLC analysis; DAICEL Chiralpak OJ-H, hexane/*i*PrOH = 70/30, flow rate = 0.5 mL/min, λ = 220 nm, retention time: 28.6 min (major) and 52.7 min (minor), 89% ee.

Preparation of (R)-1-((4-chlorophenyl)ethynyl)isochromane (4)

To a solution of **2a** (0.17 mmol) in anhydrous THF (4 mL) was added 1-chloro-4-iodobenzene (80.0 mg, 0.34 mmol), Pd(PPh₃)₄ (9.80 mg, 0.0085 mmol), Cul (3.20 mg, 0.017 mmol), Et₃N (95.0 μ L, 0.68 mmol) at room temperature and the mixture was stirred for 17 h. The mixture was concentrated under reduced pressure and purified by column chromatography with hexane/EtOAc (100:0-25:1) to give (*R*)-1-((4-chlorophenyl)ethynyl)isochromane **4** as a yellow oil (42 mg, 0.156 mmol, 92% isolated yield). ¹H NMR δ 7.39-7.10 (m, 8H), 5.76 (s, 1H), 4.32-4.24 (m, 1H), 4.05-3.98 (m, 1H), 2.98-2.83 (m, 2H). ¹³C NMR δ 134.6, 134.5, 133.1, 132.8, 129.0, 128.6, 127.3, 126.4, 125.9, 121.0, 89.1, 84.5, 67.2, 62.7, 28.0. HRMS (EI) Calcd. for C₁₇H₁₃ClO [M]: 268.0655. Found: 268.0648. [α]²⁴_D = +1.43 (c = 0.55, CHCl₃). The enantiomeric excess of **4** was determined by HPLC analysis; DAICEL Chiralpak OJ-H, hexane/iPrOH = 95/5, flow rate = 0.5 mL/min, λ = 220 nm, retention time:24.1 min (minor) and 30.8 min (major), 92.5% ee.

Preparation of (S)-1-benzyl-4-(7-chloroisochroman-1-yl)-1H-1,2,3-triazole (S16)

(*S*)-1-benzyl-4-(7-chloroisochroman-1-yl)-1H-1,2,3-triazole **S16** was synthesized from **2l** (0.6 mmol) as a similar method as the synthesis of **3** from **2a**. Recrystallization from CH_2Cl_2 gave crystals of **S16** suitable for X-ray analysis (0.45 mmol, 75% yield). A white solid. ¹H NMR δ 7.39-7.32 (m, 4H), 7.29-7.23 (m, 2H), 7.14 (dd, J = 8.0 Hz, 1.6 Hz, 1H), 7.09-7.03 (m, 2H), 5.98 (s, 1H), 5.56 (d, J = 15.0 Hz, 1H), 5.47 (d, J = 15.0 Hz, 1H), 4.18-4.10 (m, 1H), 3.94-3.86 (m, 1H), 3.02-2.92 (m, 1H), 2.82-2.72 (m, 1H). ¹³C NMR δ 149.2, 137.4, 134.3, 131.8, 131.7, 130.2, 129.1, 128.8, 128.1, 127.2, 126.3, 122.0, 71.4, 63.5, 54.2, 27.9. HRMS (EI) Calcd. for C₁₈H₁₆N₃O [M]: 325.0982. Found: 325.0979.

X-ray diffraction studies of S16

Diffraction data for (*S*)-1-benzyl-4-(7-chloroisochroman-1-yl)-1H-1,2,3-triazole (**S16**, CCDC 1910939) were collected for the 2 ϑ range of 4 to 55° at –100 °C on a Rigaku R-AXIS RAPID imaging plate diffractometer with graphite-monochromated Mo-K α radiation (λ = 0.71075 Å) with VariMax optics. Intensity data were corrected for Lorentz and polarization effects and for empirical absorptions (ABSCOR),⁵⁶ whereas structure solutions and refinements were carried out by using *CrystalStructure* package.⁵⁷ Positions of non-hydrogen atoms were determined by direct methods (SHELXD Version 2013/2)^{S8} and subsequent Fourier syntheses SHELXL Version 2016/6),⁵⁹ and were refined on F_0^2 with all the unique reflections by full-matrix least squares with anisotropic thermal parameters. All the hydrogen atoms were placed at the calculated positions with fixed isotropic parameters. Anomalous dispersion effects were included in F_c ,⁵¹⁰ and mass attenuation coefficients, values for $\Delta f'$ and $\Delta f''$, and neutral atom scattering factors were taken from references.^{511–513} Refinement of the Flack parameter (0.09(3)) using 1202 Parsons' quotients demonstrates that the absolute configuration of **S16** is (S).⁵¹⁴ Details of the crystal and data collection parameters of **S16** are summarized in **Table S1**. ORTEP drawing of **S16** is shown in **Figure S1**.

compound	S16
CCDC number	1910939
chemical formula	$C_{18}H_{16}CIN_3O$
formula weight	325.80
crystal size (mm ³)	$0.48 \times 0.11 \times 0.07$
color, habit	colorless, needle
temperature (°C)	-100
crystal system	monoclinic
space group	<i>P</i> 2 ₁ (no. 4)
<i>a</i> (Å)	12.1916(6)
b (Å)	5.5082(3)
<i>c</i> (Å)	12.3900(6)
α (deg)	90
<i>θ</i> (deg)	102.989(7)
γ (deg)	90
V (Å ³)	810.74(8)
Ζ	2
d_{calcd} (g cm ⁻³)	1.334
F(000)	340
μ (cm ⁻¹)	2.430
transmission factors range	0.840 – 0.983
number of measured reflections	7587
number of unique reflections	3593
R _{int}	0.0258
number of refined parameters	208
R1 (/> 2σ(/)) ^a	0.0485
wR2 (all data) ^b	0.0965
GOF ^c	1.000
maximum and minimum residual peaks (e Å $^-$	+0.55 / -0.44
³)	0.09(3)
Flack parameter	

 Table S1. Crystallographic Data for S16.

 ${}^{a}R1 = \Sigma ||F_{o}| - |F_{c}||/\Sigma|F_{o}|. \quad {}^{b}wR2 = [\Sigma\{w(F_{o}^{2} - F_{c}^{2})^{2}\}/\Sigma w(F_{o}^{2})^{2}]^{1/2}, w = 1/[\sigma^{2}(F_{o}^{2}) + rP], P = (Max(F_{o}^{2}, 0) + 2F_{c}^{2})/3 [r = 0.5080]. \quad {}^{c}GOF = [\Sigma w(F_{o}^{2} - F_{c}^{2})^{2}/(N_{o} - N_{params})]^{1/2}.$

Figure S1. ORTEP drawing of **S16**. Thermal ellipsoids are given at the 50% probability level. Hydrogen atom labels except for H1 are omitted for clarity.

References

- S1) M. K, Tse; S. Bhor; M. Klawonn; G. Anilkumar; H. Jiao; C. Döbler; A. Spannenberg; W. Mägerlein;
 H. Hugl and M. Beller, *Chem. Eur. J.*, 2006, **12**, 1855-1874.
- S2) R. L. Espelt; I. S. McPherson; E. M. Wiensch and T. P. Yoon, J. Am. Chem. Soc., 2015, 137, 2452-2455.
- S3) Y, -Y, Zhu; C. Cui; N. Li; B, -W Wang; Z, -M, Wang and S. Gao, Eur. J. Inorg. Chem., 2013, 17, 3101-3111.
- S4) Y. Zhang; D. Guo; S. Ye; Z. Liu and G. Zhu, Org. Lett., 2017, 19, 1302-1305.
- S5) R. Dorel; P. R. McGonigal; A. M. Echavarren, Angew. Chem., Int. Ed., 2016, 55, 11120-11123.
- S6) T. Higashi, ABSCOR, Rigaku Corporation, Tokyo, Japan, 1995.
- S7) CrystalStructure 4.3: Crystal Structure Analysis Package, Rigaku Corporation, Tokyo, Japan, 2001–2018.
- S8) G. M. Sheldrick, Acta Crystallogr., Sect. A: Found. Crystallogr., 2008, A64, 112–122.
- S9) G. M. Sheldrick, Acta Crystallogr., Sect. C: Struct. Chem., 2015, C71, 3-8.
- S10) J. A. Ibers and W. C. Hamilton, Acta Crystallogr., 1964, 17, 781–782.
- S11) W. C. Creagh and J. H. Hubbell, in International Tables for Crystallography, ed. A. J. C. Wilson, Kluwer Academic Publishers, Dordrecht, 1992, vol. C, Table 4.2.4.3., pp. 200–206.
- S12) W. C. Creagh and W. J. McAuley, in International Tables for Crystallography, ed. A. J. C. Wilson, Kluwer Academic Publishers, Dordrecht, 1992, vol. C, Table 4.2.6.8., pp. 219–222.
- S13) E. N. Maslen, A. G. Fox and M. A. O'Keefe, in International Tables for Crystallography, ed. A. J.C. Wilson, Kluwer Academic Publishers, Dordrecht, 1992, vol. C, Table 6.1.1.4., pp. 500–503.
- S14) S. Parsons, H. D. Flack, T. Wagner, Acta Crystallogr., Sect. B: Struct. Sci., Cryst. Eng. Mater., 2013, B69, 249–259.

¹H and ¹³C NMR Spectra

S20

S46

HPLC Chart

2a (rac)

FILE:	0 CALC-M	ETHOD: ARE	A% TABL	E:	0	CONC:	AREA	
NO.	RT	AREA	CONC	BC				
1	18.27	10856	49.816	BB				
2 TOTAL	24.83	10936	50.184	BB		8		
PEAK	REJ :	21792 Ø	100.000					

PEAK REJ :

2a (chiral)

2b (chiral)

D-2500					00/00/00	00:58
METHOD:	TAG:	2 C	H: 1			
FILE: 0 CALC-METHOD	AREA%	TABL	E: 0	CONC:	AREA	
NO. RT 1 17.26 3 2 18.51 TOTAL	AREA 4900 2464	CONC 93.405 6.595	BC BB BB			
PEAK REJ :	7364 1 0	00.000				

2c (rac)

D-2500					88/99/98	01:42
METHOD:	TAG:	2 C	H: 1			
FILE: 0 CALC-METH	IOD: AREA	* TABL	E: 0	CONC:	AREA	
NO. RT 1 9.93 2 10.60 TOTAL	AREA 7991 7770	CONC 50.701 49.299	BC BB BB			
PEAK REJ :	15761 0	100.000				

2c (chiral)

2d (chiral)

2e (rac)

2e (chiral)

CH. 1 C.S 5.00 ATT 2 OFFS 0 00/00/00 02:11

D-2500							00/00/00	02:11
METHOD:		TAG:	4 (СН: 1				
FILE: 0	CALC-1	METHOD: AREA%	TABI	LE:	0	CONC:	AREA	
NO. 2 3 TOTAL	RT 9.09 9.94	AREA 35509 1243	CONC 96.618 3.382	8C 88 88				
PEAK RE	J :	36752 500	100.000					

2f (chiral)

2g (rac)

2g (chiral)

2h (rac)

2h (chiral)

METHOD:	TAG:	1 CH	+: 1	
FILE: 0 CALC-METHOD:	AREA%	TABLE	: 0	CONC: AREA
ND. RT A 1 9.67 41 2 10.79 1	REA 232 889	CONC 95.619 4.381 1	ВС ВВ ТВВ	
TOTAL 43	121 1	00.000		
PERK REJ : 0				

CH. 1 C.S 5.00 ATT 5 OFFS 0 00/00/00 00:04

2i (chiral)

D-2500			00/00/00 01:13
METHOD:	TAG: 1 CH:	: 1	5
FILE: Ø CALC-METHOD	AREA% TABLE:	: 0 CONC: A	REA
NO. RT 2 9.41 5	AREA CONC B	3C	
3 10.56 TOTAL	3785 6.383 B	3B	
5 PEAK REJ : 50	9301 100.000 0		8

2I (rac)

2I (chiral)

2m (rac)

2m (chiral)

D-2500					00/00/00	01:09
METHOD:	TAG:	2 CH:	1			
FILE: 0 CALC	-METHOD: AREA%	TABLE:	0	CONC:	AREA	
NO. RT 2 30.00 3 52.27	AREA 35600 36660	CONC B 49.267 B 50.733 B	3			
TOTAL						
PEAK REJ :	72260 20000	100.000				

3 (chiral)

CH. 1 C.S 1.25 ATT 6 DFF5 0 00/00/00 00:04 8:30 147:97 25.43 28.58 35.23 52.72 8% 69 52.72 8% 69 52.72

D-250	0				88189189	99:04
METHO	0:	TAG:	1 CI	H: 1		
FILE:	0 CALC-	METHOD: AREA%	TABLE	E: 0	CONC: AREA	
NO. 10 12 TOTAL	RT 28.58 52.72	AREA 411885 23056	CONC 94.699 5.301	BC BB BB		
PEAK R	EJ :	434941 20000	100.000			

4 (chiral)

NO. RT	AREA	CONC	BC	
3 24.11	1496	3.706	BB	
4 30.80	38873	96.294	BB	
TOTAL				
	40369	100.000		
PEAK REJ :	1400			

```
CH. 1 C.S 2.50 ATT 2 OFFS 0 00/00/00 00:54
       S.P 800
                                                 41
       20.88
                                                     Racemoter
                                               0J-H
       27.40
                                              5% iproy
                                               220 mm
0.5 mh/min
                                                     00/00/00 00:54
D-2500
                      TAG: 2 CH: 1
METHOD:
FILE: 0 CALC-METHOD: AREA% TABLE: 0 CONC: AREA
NO. RT
1 20.88
2 27.40
TOTAL
                           CONC BC
48.940 BB
51.060 BB
                     AREA
                     1685
                     1758
                             100.000
                     3443
PEAK REJ :
                     Ø
```

```
7 (chiral)
```


8 (rac)