Supplementary Information

Top-down synthesis of sponge-like Mn₃O₄ at low temperature

Wangwei Lu,^a Kay He^a, Gaoling Zhao^{*a}, Bin Song^b, Jing Zhou^{a, c}, Weixia Dong^{a, d}, Gaorong

Han^a

^a State Key Laboratory of Silicon Materials and School of Materials Science and Engineering,

Zhejiang University, Hangzhou 310027, P. R. China.

^b State Key Laboratory of Silicon Materials and Department of Physics, Zhejiang University,

Hangzhou 310027, P. R. China.

^c Department of Forensic Science, Zhejiang Police College, Hangzhou 310053, P. R. China.

^d School of Materials Science and Engineering, Jingdezhen Ceramic Institute, Jingdezhen, Jiangxi

333403, China.

N₂ adsorption-desorption analysis of manganese formate

The surface area and pore structure of manganese formate was measured with N_2 adsorption and desorption isotherms by BET (Brunauere Emmette Teller) and DFT (Density functional theory) methods. Fig. S1 shows N_2 adsorption-desorption isotherm of manganese formate prepared with 0.68 M formic acid and DFT pore size distribution. The BET surface area of manganese formate was calculated to be 8.06 m²/g, which can be ascribed to abundant channels in manganese formate. The average pore diameter is 3.97 nm (see the inset of Fig. S1).

Fig. S1 N_2 adsorption-desorption isotherm of manganese formate prepared with 0.68

M formic acid (Inset: DFT pore size distribution).