Electric supplementary information (ESI)

Monooxygenase-catalyzed regioselective hydroxylation for the synthesis of hydroxyequols

Takafumi Hashimoto, ${ }^{\text {a }}$ Daiki Nozawa, ${ }^{a}$ Katsuyuki Mukai, ${ }^{\text {b }}$ Akinobu Matsuyama, ${ }^{\text {b }}$ Kouji Kuramochia and Toshiki Furuya*a

Experimental details

Chemicals
(S)-Equol and (R)-equol were purchased from Wako Pure Chemicals (Osaka, Japan).
Tween 80 was purchased from MP Biomedicals (Illkirch, France). All other chemicals were of analytical grade.

Construction of expression plasmids
A BLAST search of the genome sequences was performed with the amino acid sequence of HpaB of Pseudomonas aeruginosa $\mathrm{PAO1}\left(\mathrm{HpaB}_{\mathrm{pa}}\right)$. The genome sequence of Photorhabdus luminescens subsp. laumondii TTO1 contains three hpaB homologues, $h p a B_{\mathrm{pl}-1}, h p a B_{\mathrm{pl}-2}$, and $h p a B_{\mathrm{pl}-3}$ (Table S1). The genome sequence of Rhodococcus opacus B-4 contains three $h p a B$ homologues, $h p a B_{\mathrm{ro}-1}, h p a B_{\mathrm{ro}-2}$, and $h p a B_{\mathrm{ro}-3}$ (Table S1). These genes were amplified by PCR and then inserted into the pETDuet-1 vector using the primers and restriction enzymes listed in Table S1. The hpaB gene of Escherichia coli BL21(DE3) ($h p a B_{\mathrm{ec}}$) was also cloned (Table S1). The $h p a B_{\mathrm{pa}}$ gene of P. aeruginosa PAO1 was previously cloned to construct the pETDhpaB plasmid. ${ }^{1}$ The $h p a C$ gene of P.
aeruginosa PAO1 $\left(h p a C_{\mathrm{pa}}\right)$ was amplified from the previously constructed pETDhpaBC plasmid by PCR and then inserted into the pCDFDuet-1 vector using the primers and restriction enzymes listed in Table S1. ${ }^{1}$

Preparation of whole cells
The pETDuet-1 vector carrying each $h p a B$ homologue and the pCDFDuet- 1 vector carrying $h p a C_{\mathrm{pa}}$ were introduced into E. coli BL21 Star (DE3) cells (Invitrogen, Carlsbad, CA, USA). The transformed E. coli cells were cultivated at $30^{\circ} \mathrm{C}$ in LB medium containing (per liter) Bacto tryptone (10 g), Bacto yeast extract (5 g), and NaCl (10 g) (pH 7.0), supplemented with ampicillin ($50 \mu \mathrm{~g} \mathrm{~mL}{ }^{-1}$) and streptomycin ($50 \mu \mathrm{~g}$ $\left.\mathrm{mL}^{-1}\right)$. After cultivation for $6 \mathrm{~h}\left(\mathrm{OD}_{600}=0.8-1.0\right)$, isopropyl- β-D-thiogalactopyranoside $(1 \mathrm{mM})$ was added to the medium and cultivation was continued for an additional 15 h at $25^{\circ} \mathrm{C}$. Cells were harvested by centrifugation and were washed with potassium phosphate buffer ($50 \mathrm{mM}, \mathrm{pH} 7.5$) containing glycerol ($10 \% \mathrm{v} / \mathrm{v}$). These cells were used for whole-cell reactions.

The $h p a B_{\mathrm{pl}-1}$ gene was also co-expressed with the chaperonin GroEL and the cochaperonin GroES in E. coli cells. The pGro7 plasmid (Takara Bio, Tokyo, Japan) was used for the co-expression of GroEL and GroES, as described previously. ${ }^{2}$ The pETDuet-1 vector carrying $h p a B_{\mathrm{pl}-1}$, the pCDFDuet-1 vector carrying $h p a C_{\mathrm{pa}}$, and pGro7 were introduced into E. coli BL21 Star (DE3) cells. The transformed E. coli cells were cultivated at $30^{\circ} \mathrm{C}$ in LB medium supplemented with ampicillin ($50 \mu \mathrm{~g} \mathrm{~mL}$ -), streptomycin $\left(50 \mu \mathrm{~g} \mathrm{~mL}^{-1}\right)$, chloramphenicol ($30 \mu \mathrm{~g} \mathrm{~mL}^{-1}$), and arabinose ($4 \mathrm{mg} \mathrm{mL}^{-1}$). After cultivation for $6 \mathrm{~h}\left(\mathrm{OD}_{600}=0.8-1.0\right)$, isopropyl- β-D-thiogalactopyranoside (1 mM) was added to the medium and cultivation was continued for an additional 15 h at $15^{\circ} \mathrm{C}$.

Reactions using whole cells

The reaction mixture $(250 \mu \mathrm{~L})$ contained cells of transformed E. coli strain (50 g of wet cell weight per liter), (S)-equol or (R)-equol $(10 \mathrm{mM})$, dimethylsulfoxide $(4 \% \mathrm{v} / \mathrm{v})$, Tween $80(1.5 \% \mathrm{v} / \mathrm{v})$, and potassium phosphate buffer ($200 \mathrm{mM}, \mathrm{pH} 7.5$) containing glycerol ($10 \% \mathrm{v} / \mathrm{v}$). The reactions were carried out at $30^{\circ} \mathrm{C}$ with vigorous shaking using a microtube shaker.

Reactions on a flask scale
The reaction was carried out in a $500-\mathrm{mL}$ flask containing cells of transformed E. coli strain (collected from 400 mL culture broth), (S)-equol (5 or 10 mM) or (R)-equol (5 or 10 mM), dimethylsulfoxide ($4 \% \mathrm{v} / \mathrm{v}$), Tween $80(1.5 \% \mathrm{v} / \mathrm{v})$, and potassium phosphate buffer ($200 \mathrm{mM}, \mathrm{pH} 7.5$) containing glycerol ($10 \% \mathrm{v} / \mathrm{v}$) in a volume of 20 mL . The reactions were carried out at $30^{\circ} \mathrm{C}$ with reciprocal shaking using a flask shaker.

Product analysis
High-performance liquid chromatography (HPLC) analysis was performed using an LC20 system (Shimadzu, Kyoto, Japan) with an XTerra MS C18 IS column ($4.6 \times 20 \mathrm{~mm}$; particle size, $3.5 \mu \mathrm{~m}$; Waters, Milford, MA, USA). The reaction mixture ($250 \mu \mathrm{~L}$) was acidified by the addition of $\mathrm{HCl}(\mathrm{pH} 2-3)$, and methanol $(500 \mu \mathrm{~L})$ and water $(250 \mu \mathrm{~L})$ were then added. The solution was vigorously shaken and centrifuged. The resulting supernatant $(10 \mu \mathrm{~L})$ was injected into the HPLC system. Mobile phases A and B were composed of 0.1% formic acid in water and of methanol, respectively. The mobile phase B was programmed as follows: start ratio of 5%, held at 5% for 3 min , increased to 40% for 1 min , increased to 80% for 10 min by a linear gradient, increased to 100% for 1 min , and held at 100% for 3 min . The flow rate was $0.5 \mathrm{~mL} \mathrm{~min}{ }^{-1}$. Compounds
were detected spectrophotometrically at a wavelength of 220 nm . The amounts of (S) equol and (R)-equol were calculated from standard calibration curves that were made using the compounds purchased from Wako Pure Chemicals. The reaction products, 3^{\prime} and 6-hydroxyequols, were purified using column chromatography. The reaction mixture was acidified by the addition of $\mathrm{HCl}(\mathrm{pH} 2-3)$ and extracted with ethyl acetate. After evaporation of the extract, the resulting residue was applied to a silica gel column (Wakogel 60N, 38-100 $\mu \mathrm{m}$, Wako Pure Chemicals) and eluted with hexane/ethyl acetate. After evaporation of the fractions containing the product, the resulting residue was then applied to a C18 column (Cosmosil 75C18-OPN, Nacalai Tesque) and eluted with methanol/water. The amounts of 3^{\prime} - and 6-hydroxyequols were calculated from standard calibration curves that were made using the compounds isolated in this study. Mass analysis was performed using a Thermo Finnigan LCQ (Waltham, MA, USA) with an electrospray ionization, as described previously. ${ }^{3}$ Nuclear magnetic resonance (NMR) analysis was performed using a Bruker Spectrospin 400 (Billerica, MA, USA), as described previously. ${ }^{3}$

3'-Hydroxyequol: ${ }^{1} \mathrm{H}$ NMR (400 MHz , methanol- d_{4}): $\delta=2.75(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-4), 2.90(\mathrm{~m}, 1 \mathrm{H}$, H-3), 3.79 (m. 1H, H-2), 4.10 (m, 1H, H-2), 6.13 (d, J=2.4 Hz, 1H, H-8), 6.22 (dd, J=8.2, $2.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6), 6.50$ (dd, J=8.1, $\left.2.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6^{\prime}\right), 6.60$ (d, J=2.0 Hz, 1H, H-2'), 6.63 (d, J=8.1 Hz, 1H, H-5'), 6.78 (d, J=8.2 Hz, 1H, H-5); ${ }^{13} \mathrm{C}$ NMR (400 MHz, methanol$\left.d_{4}\right): \delta=33.1$ (C-4), 39.6 (C-3), 72.3 (C-2), 103.8 (C-8), 109.1 (C-6), 114.6 (C-4a), 115.4 ($\mathrm{C}-2^{\prime}$), 116.5 ($\left.\mathrm{C}-5^{\prime}\right), 119.6$ (C-6'), 131.2 (C-5), 134.7 (C-1'), 145.2 (C-4'), 146.5 (C-3'), 156.3 (C-8a), 157.6 (C-7); MS (ESI) (m/z): calculated for $\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{O}_{4}[\mathrm{M}-\mathrm{H}]:$ 257.0814, found: 257.0815 .

6-Hydroxyequol: ${ }^{1} \mathrm{H}$ NMR (400 MHz , methanol- d_{4}): $\delta=2.79$ (m, 2H, H-4), $3.02(\mathrm{~m}, 1 \mathrm{H}$, $\mathrm{H}-3), 3.84(\mathrm{~m} .1 \mathrm{H}, \mathrm{H}-2), 4.12(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-2), 6.24(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-8), 6.48(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-5), 6.73$ (dd, J=6.6, 2.0 Hz, 2H, H-3'), 7.06 (dd, J=6.6, $1.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-2^{\prime}$); ${ }^{13} \mathrm{C}$ NMR (400 MHz , methanol- d_{4}): $\delta=33.2(\mathrm{C}-4), 39.6(\mathrm{C}-3), 72.1(\mathrm{C}-2), 104.4(\mathrm{C}-8), 113.8(\mathrm{C}-4 \mathrm{a}), 116.4$ (C$\left.3^{\prime}\right), 116.6$ (C-5), 129.4 (C-2'), 134.1 (C-1'), 140.1 (C-6), 145.5 (C-7), 148.7 (C-8a), 157.3 (C-4'); MS (ESI) (m/z): calculated for $\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{O}_{4}[\mathrm{M}-\mathrm{H}]:$ 257.0814, found: 257.0816.

References

1 T. Furuya and K. Kino, Appl. Microbiol. Biotechnol., 2014, 98, 1145-11542.
2 T. Furuya, M. Miura and K. Kino, ChemBioChem, 2014, 15, 2248-2254.
3 T. Furuya and K. Kino, ChemSusChem. 2008, 2, 645-649.

Table S1 Genes used in this study and primer sequences for gene cloning.

Gene	Accession no. ${ }^{\text {a }}$	Primer sequence (5^{\prime} to $\left.3^{\prime}\right)^{\text {b }}$	Digestion ${ }^{\text {c }}$
$h p a B_{\mathrm{pl}-1}$	CAE12541	GAATTCACATGTCAGAAAACATGAAACAAAAAT (forward)	PciI
		CGCGGATCCCTAGCGGTTGGAAGGCCAAAT (reverse)	BamHI
$h p a B_{\mathrm{pl}-2}$	CAE13270	TTCTCATGAAACCAGAAGATTTTCGCGCCG (forward)	BspHI
		CGCGGATCCTTATTTCAGCAGCTTATCTAA (reverse)	BamHI
$h p a B_{\mathrm{pl}-3}$	CAE16399	TTCTCATGAAACCAGAAAATTTACGTACCG (forward)	BspHI
		CGCGGATCCTTACTTTAGTAATTTATCTAA (reverse)	BamHI
$h^{\text {a }}$ a $B_{\text {ro- }-1}$	BAH50341	TTCCATATGACCACCACCGAAAGCGCACCC (forward)	NdeI
		GCGCAATTGCTACTTGTTACCGAAGTACGA (reverse)	MunI
${ }^{\text {hpa }} B_{\text {ro-2 }}$	BAH50488	TTCCATATGACCACCACCGAAGCTGCCCCC (forward)	NdeI
		GCGCAATTGCTAGCTGCGGCCGAAGTAGGA (reverse)	MunI
${ }^{\text {hpa }} B_{\text {ro-3 }}$	BAH51988	TTCCATATGACCACATCAGCTTTCGTCGAC (forward)	NdeI
		GCGCAATTGTCAGCTCCGGACGATCCGCAG (reverse)	MunI
$h p a B_{\text {ec }}$	CAQ34705	TTCTCATGAAACCAGAAGATTTCCGCGCCA (forward)	BspHI
		CGCGGATCCTTATTTCAGCAGCTTATCCAG (reverse)	BamHI
$h p a B_{\text {pa }}$	AAG07478	TTCTCATGAAACCCGAAGATTTCCGTGCCT (forward)	BspHI
		CGCGGATCCTCATTGGCGGATGCGATCGAG (reverse)	BamHI
$h p a C_{\text {pa }}$	AAG07479	TTCCATATGTCCCAGCTCGAACCCAGGCAG (forward)	NdeI
		TTCGGTACCTCAGGCCGCCCGCCGGGGGCA (reverse)	KpnI

[^0]

Fig. S1 Phylogenetic tree of eight HpaB enzymes. The HpaB enzymes analyzed are listed in Table S1. Amino acid identity between $\mathrm{HpaB}_{\mathrm{pa}}$ and other HpaB enzymes are shown in parentheses.

Fig. S2 Multiple sequence alignment of HpaB enzymes. The HpaB enzymes analyzed are listed in Table S1. $\mathrm{HpaB}_{\mathrm{tt}}$, HpaB form Thermus thermophilus HB8 (NCBI accession number BAD70783). Asterisks indicate the residues that are involved in substrate binding in $\mathrm{HpaB}_{\mathrm{tt}}$.

Fig. S3 SDS-PAGE analysis of expression of HpaB enzymes in E. coli. Samples prepared from E. coli cells carrying the empty vector or respective $h p a B$ gene were loaded onto a polyacrylamide gel. W, whole-cell sample; S, soluble-fraction sample.

Fig S4 HPLC analysis of reactions of HpaB enzymes with (S)-equol. E. coli cells carrying the empty vector (A), $h p a B_{\mathrm{pa}}(\mathrm{B}), h p a B_{\mathrm{ec}}(\mathrm{C}), h p a B_{\mathrm{pl}-1}(\mathrm{D}), h p a B_{\mathrm{pl}-2}(\mathrm{E})$, $h p a B_{\mathrm{pl}-3}(\mathrm{~F}), h p a B_{\mathrm{ro}-1}(\mathrm{G}), h p a B_{\mathrm{ro}-2}(\mathrm{H})$, or $h p a B_{\mathrm{ro}-3}$ (I) were incubated with (S)-equol. Peaks 1 (at 14.0 min), 2 (at 13.2 min), and 3 (at 12.8 min) were found to correspond to (S)-equol, (S)-3'-hydroxyequol, and (S)-6-hydroxyequol, respectively. Peaks marked with asterisks were occasionally not detected.

Fig. $\mathbf{S 5}{ }^{1} \mathrm{H}$ NMR spectrum of the reaction product 3 '-hydroxyequol.

Fig. S6 ${ }^{13} \mathrm{C}$ NMR spectrum of the reaction product 3 '-hydroxyequol.

Fig. S7 HMBC spectrum of the reaction product 3'-hydroxyequol.

Fig. S8 COSY spectrum of the reaction product 3'-hydroxyequol.

Fig. S9 SDS-PAGE analysis of expression of $\mathrm{HpaB}_{\mathrm{pl}-1}$ in E. coli. Samples prepared from E. coli cells carrying hpaB pl-1 or $h p a B_{\mathrm{pl}-1}$ and pGro7 were loaded onto a polyacrylamide gel. W, whole-cell sample; S, soluble-fraction sample.

Fig. S10 ${ }^{1} \mathrm{H}$ NMR spectrum of the reaction product 6-hydroxyequol.

Fig. S11 ${ }^{13} \mathrm{C}$ NMR spectrum of the reaction product 6-hydroxyequol.

Fig. S12 HMBC spectrum of the reaction product 6-hydroxyequol.

Fig. S13 COSY spectrum of the reaction product 6-hydroxyequol.

[^0]: ${ }^{a}$ NCBI accession numbers for protein are indicated.
 ${ }^{\mathrm{b}}$ Restriction sites are underlined, and initiation and termination codons indicated in bold.
 ${ }^{c}$ See Experimental details.

