Supporting Information

Fabrication of Detonation Nanodiamond@Sodium Alginate Hydrogel Beads and Their Performance of Sunlight-Triggered Water Release

Dan Zheng ^{a, b}, Bo Bai ^{*, a, b, c, d}, Xiaohui Xu ^{a, b}, Yunhua He ^{a, b}, Shan Li ^{a, b}, Na

Hu^{c, d}, Honglun Wang^{c, d}

(^a Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region of the Ministry of Education, Chang'an University, No. 126 Yanta Road, Xi'an 710054, Shanxi, China, ^b College of Environmental Science and Engineering, Chang'an University, Xi'an, 710054, P.R. China; ^c Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810008, China; ^d Qinghai Provincial Key Laboratory of Tibetan Medicine Research, Xining, 810001, P.R. China)

* Corresponding author

Email address: baibochina@163.com

Figure S1. Mechanical property of SA-Ca beads and DND@SA hydrogel beads.

Figure S2. TEM images of DND.

Figure S3. Plot of temperature change (Δ T) over a period of 10 min versus the distilled water containing DND@SA hydrogel beads with different DND concentrations.

Figure S4. Water contact angle of DND at 500ms.

Figure S5. XRD of DND@SA hydrogel beads with different amount of DND.

		Pseudo-first-order kinetic model			Pseudo-s	Pseudo-second-order kinetic model		
DND content	Se,exp (g g ⁻¹)	Se,cal (g g ⁻¹)	K_1 (min ⁻¹)	R ²	Se,cal (g g ⁻¹)	K ₂ (g g ⁻¹ min ⁻¹)	R ²	
0mg/mL	1.05	1.00	0.0189	0.9807	1.12	0.0182	0.9982	
0.4mg/mL	1.38	2.02	0.0302	0.9422	1.43	0.0192	0.9974	
0.8mg/mL	1.65	1.31	0.0235	0.9931	1.70	0.0279	0.9994	
1.2mg/mL	1.49	1.59	0.0251	0.9525	1.55	0.0234	0.9991	
2.0mg/mL	1.24	1.13	0.0182	0.9956	1.34	0.0166	0.9989	

Table S1 Kinetic parameters for the water adsorbency of DND@SA composite beads in distilled water