Supplementary Materials

2 **Preparation of DNA functional phosphorescent quantum**

dots and application into melamine detection in milk

4 Yanming Miao* Ruirui Wang Xiaojie Sun Guiqin Yan

5 **Table of contents:**

- 6 Table S1 Comparison of different methods for the determination of melamine.
- 7 Table S2 Effect of co-existing substances on the RTP intensity of 20 µM melamine.
- 8 **Table S3** The results of spiked recovery test.
- 9

Shanxi Normal University, Linfen 041004, PR China. E-mail: mym8207@126.com; Tel.: (86) 357-2051249; Fax.: (86) 357-2051243.

Probe	Method	Linear range	Detection limit	Reference
DNA–Ag NCs ^a	Fluorescence	0.05-7 μΜ	0.01 μΜ	1
Ag NCs ^b	Fluorescence	0.1-30 µM	0.03 μΜ	2
Au NPs ^c	Fluorescence	0.05-0.5 μΜ	0.04 µM	3
Au NCs ^d	Fluorescence	0.5-10 µM	0.14 µM	4
CdTe QDs ^e	Fluorescence	0.79-9.5 μM	0.31 µM	5
CdS QDs	Fluorescence	2 nM-50 µM	1 µM	6
DNA (P ₃)	CVG-AFS ^f	1 nM-10 μM	0. 2 nM	7
DNA (P ₄)	CVG-AFS	0.1 nM-1 μM	0.02 nM	7
T ₃₆ DNA	Visualization	0.5-100 μΜ	0.08 μΜ	8
-	HPLC ^g	39.6-317.2 μM	0.79 μΜ	9
-	SERS ^h	2.5-39.6 µM	1.34 µM	10
G-quadruplex-NMM ⁱ	Fluorescence	0.1-100 nM	0.08 nM	11
ssDNA-PQDs	Phosphorescence	0.005-6 mM	0.0016 mM	This work

10 Table S1 Comparison of different methods for the determination of melamine.

^aDNA–Ag NCs: Oligonucleotide-stabilized silver nanoclusters; ^bAg NCs: Ag nanoclusters; ^cAu
NPs: Gold nanoparticles; ^dAu NCs: BSA-stabilized gold nanoclusters; ^eQDs: Quantum dots;
^fCVG-AFS: Chemical vapour generation coupled with atomic fluorescence spectrometry; ^gHPLC:
High performance liquid chromatography; ^hSERS: Surface enhanced raman scattering; ⁱG quadruplex-NMM: N-methyl mesoporphyrin IX (NMM) and K⁺ to form G-quadruplex-NMM
complex.

17

Co-existing substance	[Co-existing substance] /	Change of the RTP Intensity (%)	
	[Melamine]		
K+	150	-2.2	
Na ⁺	2500	+1.7	
Mg^{2+}	100	-3.3	
Ca ²⁺	20	+3.4	
Zn^{2+}	10	+3.9	
Hg^{2+}	0.001	-5.6	
Ag^+	0.01	-6.1	
Cu^{2+}	0.01	-5.3	
Pb^{2+}	0.08	+3.1	
Co ²⁺	0.05	+2.1	
Gle	100	-1.5	
L-Ala	12	+1.9	
L-Lys	5	-1.1	
L-Tyr	2	+2.5	
L-Glu	10	-1.1	

Table S2 Effect of co-existing substances on the RTP intensity of 20 μ M melamine.

	Sample		Added	Found	Recovery	RSD			
			(μM)	(µM)	(%, n=5)	(%)			
	Pure milk-Melamine1 Pure milk-Melamine2		10	9.8	98	4.1			
			50	52.6	105.2	5.7			
	Pu	e milk-Melamine3	100	98.3	98.3	3.3			
22	1.	H. Shuang, S. Zhu, Z.	Liu, L. Hu, S. Par	veen and G. Xu, E	Biosens. Bioelectron., 2	012, 36 , 267-			
23		270.							
24	2.	Q. Du, Q. Fei, B. Mao	Q. Du, Q. Fei, B. Mao, S. Zhu and J. You, New J. Chem., 2016, 40, 8459-8464.						
25	3.	M. Zhang, X. Cao, H. Li, F. Guan, J. Guo, F. Shen, Y. Luo, C. Sun and L. Zhang, Food Chem.,							
26		2012, 135 , 1894-1900.							
27	4.	H. Dai, Y. Shi, Y. Wang, Y. Sun, J. Hu, P. Ni and Z. Li, Biosens. Bioelectron., 2014, 53, 76-							
28		81.							
29	5.	H. Dai, S. Yan, Y. Wa	ang, Y. Sun, J. Hu	, P. Ni and L. Zhu	uang, Sens. Actuators,	<i>B</i> , 2014, 202 ,			
30		201-208.							

21 Table S3 The results of spiked recovery test.

31 6. G. L. Wang, H. J. Jiao, X. Y. Zhu, Y. M. Dong and Z. J. Li, *Talanta*, 2012, **93**, 398-403.

32 7. P. Chen, P. Yang, R. Zhou, X. Yang, J. Chen and X. Hou, *Chem. Commun.*, 2018, 54, 46964699.

H. Hu, J. Zhang, Y. Ding, X. Zhang, K. Xu, X. Hou and P. Wu, *Anal. Chem.*, 2017, 89, 5101 5106.

36 9. G. Venkatasami and J. Sowa, Anal. Chim. Acta, 2010, 665, 227-230.

37 10. A. Giovannozzi, F. Rolle, M. Sega, M. Abete, D. Marchis and A. Rossi, *Food Chem.*, 2014,
 38 159, 250-256.

R. Dai, X. Wang, Z. Wang, S. Mu, J. Liao, Y. Wen, J. Lv, K. Huang and X. Xiong,
 Microchem. J., 2019, 146, 292-299.