Supplementary Information for

Packaging vertically aligned carbon nanotubes into a heatshrink tubing for efficient removal of phenolic pollutants

Seung Min Moon^a, Hyegi Min^b, Sanghwan Park^b, Anar Zhexembekova^b, Jung Ki Suh^c and Chang Young Lee^{b, *}

^aSchool of Life Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea

^bSchool of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea

^cCenter for Analytical Chemistry, Division of Chemical and Medical Metrology, Korea Research Institute of Standards and Science (KRISS), Daejeon 34113, Republic of Korea

Fig. S1. Diameter distribution of pristine CNTs. (a) TEM images of pristine CNTs. (b) Distribution of outer (left) and inner (right) diameters of pristine CNTs. Scale bars: 10 nm

Fig. S2. Raman spectra of (a) pristine CNTs and (b) acid-treated CNTs. The ratio between disorder (D) and tangential (G) modes increased by the acid treatment, supporting covalent functionalization of the CNTs.

Fig. S3. X-ray photoelectron spectroscopy (XPS) analysis of VA-CNTs before and after acid treatment. (a) C1s (left) and O1s (right) signals of pristine CNTs, (b) C1s (left) and O1s (right) signals of acid-treated CNTs. Signals from C-O-C and O-C=O appeared after the treatment.

Fig. S4. Estimation of pore sizes in CNT-based adsorption tube. (a) Schematic showing two type of pores in CNTs. (b) SEM images of CNTs before (left) and after (right) the heat shrinkage. Scale bars: $2 \mu m$

Fig. S5. Results of BET analysis. (a) BET surface area of CNT adsorption tubes. (b) Pore size distribution of CNT adsorption tubes.

Octanol-water	Adsorption
partition coefficient	capacity
$(\log K_{\rm OW})^1$	(mmol/g)
1.46	0.76
1.96	0.79
2.15	0.51
	Octanol-water partition coefficient $(\log K_{OW})^1$ 1.46 1.96 2.15

Table S1. Octanol-water partition coefficient and adsorption capacity of phenolic compounds

Fig. S6. Transmission electron microscopy (TEM) images of (a) pristine CNTs and (b) acid-treated CNTs. Here the acid treatment was performed by flowing nitric acid solution through VA-CNTs packaged by heat-shrink tubing. The amount of amorphous carbons was greatly reduced by the acid treatment. Scale bars: 5 nm.

Reference

1. C. Hansch, A. Leo, D. H. Hoekman and A. C. Society, *Exploring QSAR.: Hydrophobic, electronic, and steric constants*, American Chemical Society, 1995.