Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2019

Supporting Figure S1. Set-up figures of (a) two and (b) three-wire configuration for measuring electrochemical performance.

Supporting Figure S2. XRD pattern of the LSM after sintering with BCZY27 at 1100 °C for 2 h.

Supporting Figure S3. SEM micrographs of (a) BCZY27 and LSM (b) powders for electrode.

Supporting Figure S4. R_p contributions at 700 °C as a function of: (a) pO_2 at constant $pH_2O \sim 1.15$ bar; and (b) pH_2O at constant $pO_2 \sim 0.1575$ bar of the backbone and infiltrated electrode.

Supporting Figure S5. R_p and HF, LF and LLF contributions of LSM/BCZY27 60/40 vol. % at 700 °C as a function of (a) pO_2 at constant $pH_2O \sim 1.15$ bar and (c) pH_2O at constant $pO_2 \sim 0.1575$ bar. R_p and HF, MF and LF contributions of LSM/BCZY27 60/40 vol. % infiltrated with Pr_6O_{11} -CeO₂ at 700 °C as a function of: (b) pO_2 at constant $pH_2O \sim 1.15$ bar and (d) pH_2O at constant $pO_2 \sim 0.1575$ bar.

Supporting Figure S6. $R_{\rm HF}$, $R_{\rm LF}$ and $R_{\rm LLF}$ of LSM/BCZY backbone electrode and the infiltrated with \Pr_6O_{11} -CeO₂ at 700 °C and 3 bar of air and steam as a function of 1000/T.

Supporting Figure S7. Nyquist plot at 700 °C and 3 bar total pressure (pAir=0.75 bar and $pH_2O=2.75$ bar) of LSM/BCZY 60/40 vol. % backbone electrode and infiltrated with Pr_6O_{11} -CeO₂ catalytic nanoparticles applying 0.63 A · cm⁻² of current density.

Supporting Figure S8. (a) R_p for the all infiltrations as a function of the applied current at 700 °C and 3 bar total pressure (*p*Air=0.75 bar and *p*H₂O=2.75 bar). (b) HF, MF and LF resistances; (c) capacitances and (d) frequencies of the applied current.