Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2019

Electronic Supplementary Information

for

Vinylpyrroles: Solid-state structures and aggregation-induced emission properties

Toru Okawara,*ª Yurina Matsufuji,^b Kouhei Mizuno,^a Kenji Takehara,^a Toshihiko Nagamura,^{a,c} and Seiji Iwasa^d ^a Department of Creative Engineering, National Institute of Technology, Kitakyushu College ^b Advanced School of Creative Engineering, National Institute of Technology, Kitakyushu College ^c Advanced Manufacturing Research Institute Biochemical Process Research Group, National Institute of Advanced Industrial Science and Technology (AIST) ^d Department of Applied Chemistry and Life Science, Toyohashi University of Technology *E-mail: okawara@kct.ac.jp

Table of Contents

Crystallographic data for 1 and 2	2
Viscosity effects on the UV-vis and fluorescence spectra of 2	5
Solvent effects on the UV-vis and fluorescence spectra of 1 and 2	6
1 H, 13 C NMR, ESI-MS, IR spectral data and summary of elemental analysis for 1 and 2	9
Aggregation-induced emission behavior in THF/water mixture	16
Absolute fluorescence quantum yield measurements for 1 and 2	17
Time-dependent density functional theory (TD-DFT) calculations for ${f 1}$ and ${f 2}$	18

Crystallographic data for 1 and 2

	Compound 1	Compound 2
Empirical formula	C ₂₀ H ₂₅ NO ₈	$C_{20}H_{25}N_3O_7$
Formula weight	407.42	419.44
Crystal size / mm ³	$0.48 \times 0.28 \times 0.20$	0.30 × 0.30 × 0.15
Crystal system	Monoclinic	Monoclinic
Space group	C2/c	P2 ₁ /c
<i>a</i> / Å	20.82(11)	17.799(2)
<i>b</i> / Å	12.78(6)	5.2201(7)
<i>c</i> / Å	17.52(9)	21.974(3)
6/°	98.80(4)	101.833(13)
Volume / ų	4605(41)	1998.3(5)
Ζ	8	4
Wavelength / nm	0.71073	0.71073
Temperature / K	296	123
Density / g·cm⁻³	1.175	1.3941
Absorption coefficient / mm	0.091	0.106
F(000)	1729	888
Reflections collected	10080	10080
Data/restraints/parameters	3367/36/267	4094/36/276
Goodness of fit	1.05	1.11
$R1 [l > 2\sigma(l)]$	0.0767	0.0888
wR2 (all data)	0.2312 ^(a)	0.2756 ^(b)
Largest diff. peak and hole, $e \cdot A^{-3}$	0.3233, -0.3556	0.6459, -0.5536

Table S1. Crystallographic data for 1 and 2	<u>)</u>
---	----------

(a) $w = 1/[\sigma^2(F_o^2) + (0.1437P)^2]$, where $P = (F_o^2 + 2F_c^2)/3$,

(b) w = $1/[\sigma^2(F_o^2)+(0.1061P)^2+2.3620P]$, where $P = (F_o^2+2F_c^2)/3$.

Table S2. Bond lengths and angles for 1

Atom-Atom	Bond lengths [Å]	Atom-Atom	Bond lengths [Å]
01-C7	1.255(6)	C1-C5	1.462(7)
O2-C8	1.231(6)	C2-C3	1.457(7)
O3-C7	1.382(6)	C2-C9	1.514(7)
03-C11	1.489(9)	C3-C4	1.427(8)
O4–C8	1.393(7)	C3-C14	1.545(7)
O4-C11	1.469(7)	C4-C10	1.515(7)
O5-C9	1.239(7)	C5-C6	1.399(7)
O6-C9	1.359(7)	C6-C7	1.507(8)
O6-C17	1.488(7)	C6-C8	1.523(7)
07-C10	1.237(6)	C11-C12	1.543(8)
O8-C10	1.373(8)	C11-C13	1.529(8)
O8-C19	1.485(6)	C14-C15	1.564(8)
N1-C1	1.388(6)	C15-C16	1.554(8)
N1-C4	1.387(6)	C17-C18	1.486(9)
C1-C2	1.459(8)	C19-C20	1.517(9)
Atom-Atom-Atom	Bond angles [°]	Atom-Atom-Atom	Bond angles [°]
C11-O3-C7	118.8(3)	C6-C7-O1	126.8(3)
C11-O4-C8	117.4(3)	C6-C7-O3	116.3(3)
C17-O6-C9	117.4(4)	04-C8-02	118.1(3)
C19-O8-C10	117.5(3)	C6-C8-O2	125.1(4)
C4-N1-C1	111.4(3)	C6-C8-O4	116.7(3)
C2-C1-N1	106.0(3)	06-C9-05	122.6(4)
C5-C1-N1	125.1(3)	C2-C9-O5	125.2(4)
C5-C1-C2	128.9(3)	C2-C9-O6	112.1(3)
C3-C2-C1	107.9(3)	08-C10-07	123.5(3)
C9-C2-C1	123.5(3)	C4-C10-O7	126.2(3)
C9-C2-C3	128.5(3)	C4-C10-O8	110.2(3)
C4-C3-C2	105.7(3)	04-C11-O3	109.2(3)
C14-C3-C2	129.6(3)	C12-C11-O3	105.7(4)
C14-C3-C4	124.6(3)	C12-C11-O4	106.8(3)
C3-C4-N1	108.9(3)	C13-C11-O3	110.9(3)
C10-C4-N1	120.3(3)	C13-C11-O4	110.7(4)
C10-C4-C3	130.8(3)	C13-C11-C12	113.3(3)
C6-C5-C1	134.0(3)	C15-C14-C3	113.6(3)
C7-C6-C5	125.3(3)	C16-C15-C14	113.2(3)
C8-C6-C5	116.9(3)	C18-C17-O6	105.6(4)
C8-C6-C7	117.7(3)	C20-C19-O8	108.4(3)
03-C7-01	116.8(3)		

Table S3. Bond lengths and angles for 2

Atom-Atom	Bond lengths [Å]	Atom-Atom	Bond lengths [Å]
01-C7	1.228(5)	C6-C8	1.470(6)
07-C11	1.320(5)	C6-C5	1.366(6)
07-C19	1.463(5)	N1-C4	1.350(6)
02-C8	1.235(5)	N1-C1	1.366(5)
O6-C10	1.327(6)	C11-C2	1.494(6)
06-C17	1.474(5)	C4-C3	1.411(6)
O4-C10	1.211(5)	C4-C10	1.467(6)
05-C11	1.206(5)	C2-C1	1.417(6)
O3–C9	1.189(6)	C2-C3	1.415(6)
N2-C9	1.407(6)	C12-C3	1.495(6)
N2-C8	1.366(6)	C12-C13	1.528(7)
N2-C16	1.471(6)	C19-C20	1.502(7)
N3-C9	1.387(6)	C1-C5	1.414(6)
N3-C7	1.389(6)	C13-C14	1.498(7)
N3-C15	1.465(5)	C18-C17	1.495(7)
Atom-Atom-Atom	Bond angles [°]	Atom-Atom-Atom	Bond angles [°]
C19-07-C11	115.8(3)	C6-C7-O1	124.8(4)
C17-O6-C10	115.5(3)	C6-C7-N3	116.9(4)
C8-N2-C9	124.9(4)	C1-C2-C11	123.2(4)
C16-N2-C9	116.7(4)	C3-C2-C11	127.8(4)
C16-N2-C8	118.3(4)	C3-C2-C1	108.8(4)
C7-N3-C9	124.9(4)	C13-C12-C3	111.3(4)
C15-N3-C9	117.1(4)	C20-C19-O7	106.3(4)
C15-N3-C7	118.0(4)	N2-C8-O2	120.1(4)
N2-C9-O3	121.0(4)	C6-C8-O2	122.5(4)
N3-C9-O3	122.4(4)	C6-C8-N2	117.4(4)
N3-C9-N2	116.6(4)	C2-C1-N1	106.1(4)
C8-C6-C7	119.1(4)	C5-C1-N1	125.9(4)
C5-C6-C7	125.8(4)	C5-C1-C2	128.0(4)
C5-C6-C8	115.1(4)	C2-C3-C4	105.0(4)
C1-N1-C4	110.8(4)	C12-C3-C4	126.3(4)
05-C11-07	123.8(4)	C12-C3-C2	128.7(4)
C2-C11-O7	112.2(4)	O4-C10-O6	123.4(4)
C2-C11-O5	124.0(4)	C4-C10-O6	114.1(4)
C3-C4-N1	109.3(4)	C4-C10-O4	122.5(4)
C10-C4-N1	116.5(4)	C1-C5-C6	135.3(4)
C10-C4-C3	134.1(4)	C14-C13-C12	112.3(4)
N3-C7-O1	118.3(4)	C18-C17-O6	106.4(4)

Viscosity effects on the UV-vis and fluorescence spectra of 2

50 μ L of a stock solution of **2** in CH₂Cl₂ with a concentration of 1.0×10⁻³ M was stored in glass tubes. After removal of the solvent, the residue was re-dissolved in 5 mL of methanol/glycerol solvents (100/0, 50/50, 40/60, 30/70, 20/80 and 10/90, *v*/*v*). UV-vis spectra (**Fig S1**) indicates there are no precipitates in all of the solutions. The fluorescence spectra were measured as prepared (**Fig S2**).

Fig S1. UV-vis spectra of 2 in methanol/glycerol solutions.

Fig S2. Fluorescence spectral change of 2 based on the glycerol fraction present in the methanol solution.

Fig S3. UV-vis absorption spectra for (a) **1** and (b) **2** in CHCl₃, CH₂Cl₂, CH₃CN, THF and CH₃OH.

Fig S4. Fluorescence spectra for (a) 1 and (b) 2 in $CHCI_3$, CH_2CI_2 , CH_3CN , THF and CH_3OH .

Fig S5. Mataga-Lippert plots for (a) **1** and (b) **2**. $\Delta f = (\epsilon - 1)/(2\epsilon + 1) - (n^2 - 1)/(2n^2 + 1)$.

¹H, ¹³C NMR, ESI-MS, IR spectral data and elemental analysis for 1 and 2

Fig S6. ¹H NMR spectrum of **1** in CDCl₃ at 25° C.

Fig S7. ¹³C NMR spectrum of **1** in CDCl₃ at 25° C.

Fig S8. ESI-TOF-MS spectrum of 1 in CH₂Cl₂/CH₃OH.

Fig S9. IR spectrum of 1 measured by a KBr method.

Fig S10. ¹H NMR spectrum of **2** in CDCl₃ at 25° C.

Fig S11. ¹³C NMR spectrum of **2** in CDCl₃ at 25° C.

Fig S12. ESI-TOF-MS spectrum of 2 in CH_2Cl_2/CH_3OH .

Fig S13. IR spectrum of 2 measured by a KBr method.

Compounds		Weight [µg]	H [%]	C [%]	N [%]
1	Found ^(a)	1414.2	6.14	59.07	3.56
1	Calculated	-	6.19	58.96	3.44
2	Found ^(a)	1355.1	5.89	56.98	9.86
2	Calculated	-	6.01	57.27	10.02

Table S4. Summary of the CHN elemental analysis of 1 and 2.

(a) Recorded on a Yanaco CHN Corder MT-5 analyzer.

Aggregation-induced emission behavior in THF/water mixture

Stock solutions of **1** and **2** in THF with a concentration of 1.0×10^{-3} M were prepared. The aggregates were freshly prepared by adding water into the pyrrole solutions to make a total amount of 5 mL mixture. For example, the water fraction of 80% mixture including 1.0×10^{-4} M of a dye was prepared by 0.50 mL of the stock solution and diluted with 0.50 mL of THF followed by addition of 4.0 mL water. The fluorescence spectra were recorded by Hitachi F7000 spectrophotometer. Fluorescence and excitation slit widths were set to 5.0 nm and 10.0 nm, respectively. All spectra were recorded under 365 nm excitation wavelength.

Fig S14. Photoluminescence spectral changes of (a) **1** and (b) **2** (1×10^{-4} M) based on the water fraction present in the THF solution. Photophysical spectral changes of (c) **1** and (d) **2** (1×10^{-4} M) based on the water fraction between 0 and 80%.

Absolute fluorescence quantum yield measurements for 1 and 2

Fig S15. Absolute quantum yield measurements of (a) 1 and (b) 2.

Time-dependent density functional theory (TD-DFT) calculations for 1 and 2

Initial coordinates for ${\bf 1}$

Symbolic Z-matrix:

Charge =	0 Multiplicity =	1		
С		10.3528	7.1517	7.5259
С		10.0589	8.5434	7.3545
С		9.0757	8.6099	6.2814
С		8.7777	7.2437	5.8598
С		7.8304	6.7811	4.8468
н		7.4655	7.475	4.3475
С		7.354	5.5261	4.464
С		7.8098	4.2021	5.0366
С		6.3159	5.4928	3.3502
С		5.6442	3.3228	4.2505
С		5.1812	1.963	3.6774
н		4.3148	2.0627	3.2758
н		5.134	1.3163	4.3856
н		5.8085	1.6652	3.0143
С		4.7397	3.8238	5.3863
н		5.0739	4.6621	5.7153
н		4.7336	3.1797	6.0979
н		3.8477	3.9452	5.0556
С		11.3061	6.4539	8.4716
С		12.2704	4.2634	8.9962
н		12.102	4.3938	9.9433
н		13.1889	4.5139	8.8127
С		12.0436	2.8154	8.6257
н		11.1225	2.5892	8.766
н		12.5981	2.2544	9.1728
н		12.2679	2.6838	7.7012
С		8.3825	9.8291	5.7135
С		8.3195	12.2675	5.717
н		8.3498	12.3813	4.7544
н		7.3925	12.2816	6.0027
С		9.0933	13.3308	6.394
н		9.0651	13.1915	7.3428
н		8.7114	14.1871	6.1845
н		10.004	13.3053	6.0927

С	10.7308	9.6821	8.1531
н	10.9138	9.369	9.0516
н	10.112	10.4259	8.2188
С	12.0658	10.1933	7.5142
н	12.7053	9.4649	7.4986
н	11.8955	10.4579	6.5965
С	12.6822	11.3934	8.2794
н	12.0912	12.1474	8.224
н	13.5296	11.6209	7.8899
н	12.8103	11.1544	9.2005
Ν	9.5826	6.4194	6.6355
н	9.601	5.5619	6.5706
0	8.8476	3.9963	5.7092
0	7.0258	3.1094	4.7428
0	6.041	6.4347	2.6061
0	5.6547	4.2787	3.1428
0	11.9677	6.9855	9.3674
0	11.3424	5.1056	8.1955
0	7.3831	9.8099	4.9846
0	8.9756	10.9857	6.1187

Initial coordinates for 2

Symbolic Z-matrix:

Charge =	0 Multiplicity = 1		
0	0.8615	1.1703	5.7247
0	5.8879	5.4566	7.3204
0	0.6344	5.3182	9.4842
0	-0.3549	3.712	8.2849
0	5.8804	4.0785	5.569
0	4.9588	1.0357	3.3342
0	1.647	-1.9247	2.5423
Ν	1.9803	3.1649	6.9891
н	1.3131	2.6263	6.7911
Ν	1.2642	-0.392	4.1582
Ν	3.3408	-0.5011	3.0078
С	1.9293	4.1348	7.9266
С	2.0399	-1.0043	3.1852
С	3.2073	3.1326	6.3891
С	3.0144	1.2168	4.6847

С	5.3422	4.5363	6.5465
С	3.9709	4.1578	7.0005
С	1.6594	0.7016	4.9165
С	3.6041	2.2446	5.3617
н	4.4964	2.4015	5.0744
С	0.6321	4.3452	8.5792
С	3.1786	4.79	7.9871
С	3.5587	5.8831	8.934
н	2.7393	6.3335	9.2605
н	4.1068	6.5544	8.4562
С	3.8488	0.5935	3.6497
С	-0.0751	-0.9407	4.3853
н	-0.7438	-0.3494	3.9803
н	-0.2412	-1.0087	5.3492
н	-0.1374	-1.8304	3.9799
С	4.3472	5.3376	10.1234
н	3.7709	4.7165	10.6375
н	5.1247	4.8245	9.7906
С	4.1758	-1.1662	1.9959
н	4.9984	-1.4949	2.4146
н	4.4028	-0.527	1.2879
н	3.6828	-1.9198	1.6085
С	-0.4502	6.7579	11.0353
н	-0.277	7.5654	10.5066
н	0.3202	6.5757	11.6134
н	-1.2482	6.8928	11.5861
С	7.1839	5.9744	6.8801
н	7.119	6.3312	5.958
н	7.8666	5.2574	6.8937
С	7.5503	7.067	7.8415
н	8.4033	7.4665	7.5718
н	7.6339	6.6934	8.7429
н	6.8513	7.7541	7.8355
С	-0.6685	5.598	10.1148
н	-0.9834	4.8088	10.623
н	-1.3443	5.8236	9.4284
С	4.8294	6.4249	11.0331
н	5.3677	7.0636	10.5219
н	5.3747	6.0352	11.748
н	4.0591	6.8877	11.4262

Fig S16. Calculated orbital energy diagrams of 1 and 2.