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1. Interaction between xanthinium and Fe(OTf)2

As far as we are concerned, there has been no study of the interaction between
xanthinium and Fe(OTf), by spectra reported to date. For this purpose, the interaction
between xanthinium and Fe(OTf), was studied by using UV-Vis, FTIR, 'H, '3C and "°F NMR,
and HRMS. The UV-Vis spectra of xanthinium are shown in Figure S1. The xanthinium
possesses two main absorbance bands at 204 nm (absorption coefficient 1.3x10%, n-n*
transition) and 268 nm (absorption coefficient 7.0x10%, n-r* transition), and no absorbance
in the range of 300—800 nm. Upon addition of different equivalents of Fe(OTf). (0.2 to 10
equiv.) to the solution, the UV-Vis spectra of xanthinium did not show significant changes
neither at 204 nm nor 268 nm, providing no clear trend of change. Since the UV-Vis spetra
must be recorded at low concentration (5x10=° mol/L), the interaction between xanthinium
and Fe(OTf), was further diminished, and finally not detectable by the spectra. Thus, the
UV-Vis spetra was considered not suitable for the study of the interaction between
xanthinium and Fe(OTf)2. It is very important to note that, in a specific type of spectrum, no
observation of changes does not necessarily mean no interaction between two species,

because the spectrum technique might be not sensitive enough to detect the changes.
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Figure S1. UV-Vis spectra of xanthinium C1 (5x10®° mol/L in EtOH) upon addition of different
equivalents of Fe(OTf),) at 25 °C. The corresponding Fe(OTf), solution without C1 was used as

reference.



In addition to UV-Vis spectra, FTIR spectra were studied. The FTIR spectrum of
xanthinium of C1 shows two carbonyl signals at 1723 cm~' and 1683 cm™' (symmetric and
antisymmetric stretching). After mixing with Fe(OTf)2, the signals shifted to 1726 cm~' and
1676 cm™', respectively (Figure S2). The peaks at 1194 (C—F stretching, very strong), 622
and 608 cm™ also shifted to 1209, 641 and 618 cm™', respectively. On the other hand, the
signal intensity at 1140 cm™ increased, while the signal at 855 cm~"' almost disappeared.
The changes of C=0 and C-F stretching frequencies (corresponding to xanthinium cation
and N(SO2CF3)2~ anion, respectively) in FTIR spectra indicated that interactions between

xanthinium and Fe(OTf)2. may involve coordination of Fe(ll) to carbonyl groups.
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Figure S2. FTIR spectra of xanthinium of C1 without the presence of Fe(OTf), and in the presence

of Fe(OTf)2 (1.0 equiv., the signals of Fe(OTf), have been subtracted from the spectra).

Subsequently, the NMR spectra were used to study the interaction between xanthinium
and Fe(OTf), (Figure S3, S4 and S5). As shown in Figure S3, upon addition of additional
equivalents of Fe(OTf), to xanthinium, the chemical shifts of '"H NMR showed no obvious
changes. This indicated that the interaction with Fe(OTf). in solution did not cause any
significant changes of the 'H magnetic environment in the xanthinium. Thus, '"H NMR was
not suitable for the study of the interaction between xanthinium and Fe(OTf).. In addition,
13C NMR was run (Figure S4). Upon addition of Fe(OTf)., all signals of xanthinium shifted
upfield by 1.21-1.46 ppm (more electron enriched). Notably, the signal-to-noise ratio of

carbon C3 and C6 increased, while the signals of C8 and C10 decreased.
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Figure S3. '"H NMR spectra of xanthinium (5 mg/mL in (CD3).CO, 400 MHz) upon addition of
different equivalents of Fe(OTf), at 25 °C.
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Figure S4. ®C NMR spectra of (a) xanthinium (0.27 mol/L) and (b) xanthinium+Fe(OTf),
(xanthinium = 0.27 mol/mL; Fe(OTf)2 = 0.027 mol/mL) in (CD3).CO (75 MHz) shown at 10-50 ppm

and 105-155 ppm using solvent signal as reference.
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Furthermore, the '""F NMR spectra were recorded as well (Figure S5). The '°F NMR
signals for NTf,~ of xanthinium and OTf of Fe(OTf). were recorded, and clearly showed at —
79.99 ppm and —56.91 ppm (broad peak) respectively. Compared to ionic salts of OTf ('F
NMR of Ca(OTf), and Bi(OTf)s; appears at —79.24 ppm and —79.00 ppm,' respectively), the
signal of pure Fe(OTf)2 shifts to much deshielded region, implying that the triflate groups in
Fe(OTf), are more electron-deficient than free ionic OTf. Thus, the triflate groups in
Fe(OTf), were considered coordinating to Fe(ll) (donating the electrons to Fe?* center) in
(CD3)2CO without the presence of other ligand. Upon addition of 0.1 equiv. of Fe(OTf). to
xanthinium, the signal of triflate shifted to a much shielded value of —73.40 ppm, closer to
the ionic OTf. This chemical shift was also comparable with the value of unbound OTf™ (-
78.96 ppm,? —79.59 ppm3 and —69.7 ppm?), which was liberated from Fe(OTf), after the
Fe?* coordinating to a ligand. For this reason, most of Fe?* was considered coordinating to
xanthinium when the ratio of xanthinium to Fe(OTf)2 was high. After 0.5 equiv. of Fe(OTf)2
was added to xanthinium, the signal of triflate was hardly detected due to the broadening of
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Figure S5. "°F NMR spectra of (a) xanthinium, (b) Ca(OTf),, (c) Fe(OTf), (d)-(f) xanthinium upon
addition of different equivalents of Fe(OTf), at 25 °C and (g) xanthinium upon addition of 2.0
equivalents of Fe(OTf), at =50 °C ((CD3).CO, 376 MHz, 5 mg/mL of xanthinium)



the spectrum. Upon addition of 1.0 equiv. and 2.0 equiv. of Fe(OTf), to xanthinium, the
signals of triflate shifted to —60.19 and —61.47 ppm (Figure S5(f) and S5(g)), respectively,
showing an obvious trend closer to Fe(OTf),. This change was due to the high content of
Fe(OTf)2 which was not able to fully coordinate to xanthinium. On the other hand, since the
NTf2~ is not coordinating (remaining as free anion), the signals of NTf2~ only showed slight
changes from —79.99 ppm to —79.90 ppm. In order to slow down the interaction, the '°F
NMR was recorded at —-50 °C subsequently (Figure 5(h)). The signal of triflate shifted to —
78.94 ppm (close to —79 ppm of ionic OTf"), indicating that the triflate was “frozen” as a free
anion. Although the chemical shift of triflate at —-50 °C was close to free OTf", the shape of
peak was still broadened due to the slow dynamic ion exchange.

Finally, high resolution mass spectrometry (HRMS) was used to study the solution of C1
(Figure S6 and S7). Although the Fe?*-containing peak was not detected by HRMS, the
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Figure S6. HRMS signal of a [2xanthinium+QOTf]" species (ESI-TOF positive ion mode).
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Figure S7. HRMS signal of a [xanthinium+OTf+NTf.] species (ESI-TOF negative ion mode).
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signals containing xanthinium species from ion exchange were detected. A
[2xanthinium+OTf]" (found 595.1896, diff. = —1.5 ppm) species was found in positive ion
mode (Figure S6). The exact mass and the isotopic distribution confirmed the existence of
this species unambiguously. When running in negative ion mode, a [xanthinium+OTf+NTf2]"
(found 651.9887, diff. = —0.9 ppm) species was detected, confirming by the exact mass and
isotopic distribution (Figure S7). In addition, other species, such as [2xanthinium+NTf.]* and
[xanthinium+2NTf.]- were detected by HRMS as well. According to the HRMS, the ion
exchange between xanthinium-NTf2 and Fe(OTf). is simply proposed in Scheme S1. During
the process of ion exchange, free Fe?* and OTf could be released and transferred between
different species. Thus, the Lewis acidic free Fe?* could bind with the carbonyl of dienophile,

activating the substrates in the D-A reaction.

The detectable changes of FTIR, 3C and 'F NMR, and HRMS spectra clearly showed
that the interactions between xanthinium and Fe(OTf), do exist. According to FTIR, and 3C
and '®F NMR, Fe?* could possibly coordinate to the carbonyls of xanthinium; while the

HRMS confirmed the ion exchange between xanthinium and Fe(OTf)2.
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Scheme S1. lon exchange between xanthinium-NTf, and Fe(OTf)..



2. 'H and '°F NMR of C1 before and after the catalytic reactions
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Figure S8. '"H NMR of C1: (a) before and (b) after catalytic reactions (400 MHz, (CD3).SO)
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Figure S9. '°F NMR of C1: (a) before and (b) after catalytic reactions (376 MHz, (CD3).SO)
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3. Comparison between C1-C4

The change of Gibbs free energy and Mulliken charge of Fe(ll) or Fe(lll) after the ion
exchange were calculated at B3LYP/6-31G/LANL2DZ level in gas phase to obtain an over-

simplified evaluation for C1—C4. The results are shown in Scheme S2.
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Scheme S2. lon exchange between xanthiniums and Fe salts. Gibbs energies and Mulliken charges
were calculated at B3LYP/6-31G/LANL2DZ level.

According to the calculations, the ion exchange in C1 is favored (AG = —22.2 kcal/mol)
which is supported by the '®F NMR change and HRMS. After ion exchange, the Mulliken
charge of Fe(OTf). (0.573) increases to 0.718 of Fe(OTf)(NTf2), which indicates a more
Lewis acidic Fe(ll) salt. Thus, C1 resulted in excellent yields on catalyzing the D-A reactions
(main text Table 1, entry 6). In C2, the ion exchange is expected to be favored (AG = -10.7
kcal/mol), and this is consistent to the coordinating nature of |~ (easiness of binding to
transition metals). However, the ion exchange in C2 is expected to result in less Lewis
acidic Fel(OTf) (Mulliken charge drops from 0.573 to 0.400). Thus, C2 afforded low yields of
products (33% yield, main text Table 1, entry 7). In C3, the ion exchange is expected not to
be favourable (AG = +39.6 kcal/mol), and in fact the reversed reaction was spontaneous
and already known in the literature.® Thus, the xanthinium and Fe(OTf), in C3 remained
essentially unchanged, and the yield using C3 (55% yield, Table 1, entry 8) is lower than
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the yield using Fe(OTf). alone (81% vyield, Table 1, entry 11) by 26%. In C4, the ion
exchange is expected to be not favourable (AG = +16.7 kcal/mol) either. Since Fe(OTf)s is
very Lewis acidic (1.208 of Mulliken charge), excellent yield (97% yield, Table 1, entry 9)

was still obtained, which is comparable to the yield using C1.
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4. Copies of 'TH NMR and '3*C NMR spectra of the products
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