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Characterization of ofloxacin-imprinted UiO-66-NH2@RAMIP@BSA
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Fig. S1 XRD patterns of (a) UiO-66-NH2 and (b) UiO-66-NH2@RAMIP@BSA.

The chemical stability of UiO-66-NH2 and UiO-66-NH2@RAMIP@BSA can be 

seen from the results of x-ray diffractomer patterns (XRD). As shown in Fig. S1, the 

three main diffraction peaks of UiO-66-NH2 (2θ =7.42°, 8.59° and 25.77°) coincided 

with previous report.16 Compared with XRD of UiO-66-NH2, three peaks was rarely 

changed for UiO-66-NH2@RAMIP@BSA. These results suggested that the crystal 

structure of UiO-66-NH2 was not affected by the preparation process. The core had 

high enough stability to meet the needs of practical applications.
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Fig. S2 Thermogravimetric curves of (a) UiO-66-NH2 and (b) UiO-66-

NH2@RAMIP@BSA.

Fig. S2 showed thermogravimetric curves of UiO-66-NH2 and UiO-66-

NH2@RAMIP@BSA. Two curves were almost same, and the weight loss was divided 

into three parts. For UiO-66-NH2, the loss of weight at about 70 ℃ was due to the 

evaporation of water molecules. The loss of weight at about 270 ℃ was probably due 

to the volatilization of DMF which was not replaced by chloroform in the pores. The 

loss of weight above 350 ℃ was related to the decomposition of UiO-66-NH2. For 

UiO-66-NH2@RAMIP@BSA, the decomposition temperature was reduced to about 

200 ℃, which was due to the decomposition of bonded RAMIP layer and BSA, 

indicating that RAMIP and BSA successfully bonded onto core surface. In the end, 

the residual ash of UiO-66-NH2 was more than that of UiO-66-NH2@RAMIP@BSA, 

further demonstrating the existence of BSA and RAMIP layer. The thermal stability 

of UiO-66-NH2@RAMIP@BSA was good enough for practical application.



Table S1 Adsorption isotherm constants for Langmuir, Freundlich and Langmuir-Freundlich equations

Langmuir Freundlich Langmuir-Freundlich
Materials

Qm (mg/g) KL (L/mg) R2 n KF (g/L) R2 Qm (mg/g) KL m R2

UiO-66-NH2@RAMIP@BSA 116.4 0.001142 0.9107 1.235 0.2783 0.9830 88.0 0.0010 1.316 0.9934

UiO-66-NH2@RANIP@BSA 45.37 0.0005770 0.9355 11.92 0.05329 0.9873 43.5 0.00056 1.069 0.9984

Table S2 The results of kinetics analysis of UiO-66-NH2@RAMIP@BSA and UiO-66-NH2@RANIP@BSA

Model Materials Equations
Qe,cal

(mg/g)
K R2

UiO-66-NH2@RAMIP@BSA y=-0.4014x+4.708 110.8 0.4014 0.7540
Pseudo first order kinetic model

UiO-66-NH2@RANIP@BSA y=-0.3366x+3.360 28.80 0.3366 0.8502

UiO-66-NH2@RAMIP@BSA y=0.002340x+0.1609 427.4 0.00003400 0.9230
Pseudo second order kinetic model

UiO-66-NH2@RANIP@BSA y=0.009100x+0.4927 109.9 0.0001680 0.9913



Table S3 Comparisons between this work and the existing literature in the analysis performance of OFL

N
O. Core materials of MIPs in literature Qmax 

(mg/g)
Adsorption 
rate (min)

Recovery 
(%) RSD (%) LODs

(ng/mL)
Linearities

(ug/L)
Referen

ces
1 magnetic carboxylated cellulose nanocrystals 45.64 20 81.2-93.7 0.6-7.5 5.4-12.0 - 19

2 Fe3O4@SiO2 nanoparticles 32.7 60 83.1-103.1 0.8-8.2 10.5 100-
100000 20

3 poly(glycidyl methacrylate-co-
ethylenedimethacrylate) microspheres 5.3 - 82.9-97.5 <9.6 - 1-50 21

4 nanomagnetic polyhedral oligomeric 
silsesquioxanes 2.255 - 75.6-108.9 2.91-

8.87 1.76 50-1000 22

5 polysulfone materials on nickel foam 1.882 30 79.31-
107.1 1.7-10.3 1.9 6.2-10000 23

6 Fe3O4@SiO2 nanoparticles 1.455 30 79.2-84.4 2.9-6 18 250-5000 24
7 stainless steel fiber 0.425 20 89.7-103.4 5.8-7.2 - - 25

8 polymerization methacryclic acid and ethylene 
glycol dimethacrylate 0.100 - 87.2-97 2.9-4.5 30 70-60000 26

9 inorganic-organic co-functional monomer 0.100 - 87.2-102.9 <5.4 - 200-20000 27

10 spherical silica gel (2 μm) 80.67 25
>83.1, 

average 
95.6

2.47-
3.38 0.2 - 28

11 UiO-66-NH2 50.55 9 93.7-104.2 2.0-4.5 15.6 100-
100000

This 
work


