Supplementary Material

Characterization of ofloxacin-imprinted UiO-66-NH₂@RAMIP@BSA

Fig. S1 XRD patterns of (a) UiO-66-NH₂ and (b) UiO-66-NH₂@RAMIP@BSA.

The chemical stability of UiO-66-NH₂ and UiO-66-NH₂@RAMIP@BSA can be seen from the results of x-ray diffractomer patterns (XRD). As shown in Fig. S1, the three main diffraction peaks of UiO-66-NH₂ ($2\theta = 7.42^{\circ}$, 8.59° and 25.77°) coincided with previous report.¹⁶ Compared with XRD of UiO-66-NH₂, three peaks was rarely changed for UiO-66-NH₂@RAMIP@BSA. These results suggested that the crystal structure of UiO-66-NH₂ was not affected by the preparation process. The core had high enough stability to meet the needs of practical applications.

Fig. S2 Thermogravimetric curves of (a) UiO-66-NH₂ and (b) UiO-66-NH₂@RAMIP@BSA.

Fig. S2 showed thermogravimetric curves of UiO-66-NH₂ and UiO-66-NH₂@RAMIP@BSA. Two curves were almost same, and the weight loss was divided into three parts. For UiO-66-NH₂, the loss of weight at about 70 °C was due to the evaporation of water molecules. The loss of weight at about 270 °C was probably due to the volatilization of DMF which was not replaced by chloroform in the pores. The loss of weight above 350 °C was related to the decomposition of UiO-66-NH₂. For UiO-66-NH₂@RAMIP@BSA, the decomposition temperature was reduced to about 200 °C, which was due to the decomposition of bonded RAMIP layer and BSA, indicating that RAMIP and BSA successfully bonded onto core surface. In the end, the residual ash of UiO-66-NH₂ was more than that of UiO-66-NH₂@RAMIP@BSA, further demonstrating the existence of BSA and RAMIP layer. The thermal stability of UiO-66-NH₂@RAMIP@BSA was good enough for practical application.

Materials	Langmuir				Freundlich			Langmuir-Freundlich			
	$Q_{\rm m}$ (mg/g)	$K_{\rm L}$ (L/mg)	R^2	n	$K_{\rm F}$ (g/L)	R^2	$Q_{\rm m}$ (mg/g)	K _L	т	R^2	
UiO-66-NH2@RAMIP@BSA	116.4	0.001142	0.9107	1.235	0.2783	0.9830	88.0	0.0010	1.316	0.9934	
UiO-66-NH2@RANIP@BSA	45.37	0.0005770	0.9355	11.92	0.05329	0.9873	43.5	0.00056	1.069	0.9984	

Table S1 Adsorption isotherm constants for Langmuir, Freundlich and Langmuir-Freundlich equations

Table S2 The results of kinetics analysis of UiO-66-NH2@RAMIP@BSA and UiO-66-NH2@RANIP@BSA

Model	Model Materials		$Q_{ m e,cal}$ (mg/g)	K	R^2
Decudo first order kinetic model	UiO-66-NH2@RAMIP@BSA	y=-0.4014x+4.708	110.8	0.4014	0.7540
r seudo mist order kinetic moder	UiO-66-NH2@RANIP@BSA	y=-0.3366x+3.360	28.80	0.3366	0.8502
Decudo second order trinctic model	UiO-66-NH2@RAMIP@BSA	y=0.002340x+0.1609	427.4	0.00003400	0.9230
r seudo second order kinetic model	UiO-66-NH2@RANIP@BSA	y=0.009100x+0.4927	109.9	0.0001680	0.9913

N O	Core materials of MIPs in literature	$Q_{\rm max}$ (mg/g)	Adsorption rate (min)	Recovery	RSD (%)	LODs (ng/mL)	Linearities	Referen
1	magnetic carboxylated cellulose nanocrystals	45.64	20	81.2-93.7	0.6-7.5	5.4-12.0	- (u <u>g</u> , <u>L</u>)	19
2	Fe ₃ O ₄ @SiO ₂ nanoparticles	32.7	60	83.1-103.1	0.8-8.2	10.5	100- 100000	20
3	poly(glycidyl methacrylate-co- ethylenedimethacrylate) microspheres	5.3	-	82.9-97.5	<9.6	-	1-50	21
4	nanomagnetic polyhedral oligomeric silsesquioxanes	2.255	-	75.6-108.9	2.91- 8.87	1.76	50-1000	22
5	polysulfone materials on nickel foam	1.882	30	79.31- 107.1	1.7-10.3	1.9	6.2-10000	23
6	Fe ₃ O ₄ @SiO ₂ nanoparticles	1.455	30	79.2-84.4	2.9-6	18	250-5000	24
7	stainless steel fiber	0.425	20	89.7-103.4	5.8-7.2	-	-	25
8	polymerization methacryclic acid and ethylene glycol dimethacrylate	0.100	-	87.2-97	2.9-4.5	30	70-60000	26
9	inorganic-organic co-functional monomer	0.100	-	87.2-102.9	<5.4	-	200-20000	27
10	spherical silica gel (2 µm)	80.67	25	>83.1, average 95.6	2.47- 3.38	0.2	-	28
11	UiO-66-NH ₂	50.55	9	93.7-104.2	2.0-4.5	15.6	100- 100000	This work

Table S3 Comparisons between this work and the existing literature in the analysis performance of OFL