Electronic Supplementary Information (ESI) for Co²⁺ substituted for Bi³⁺ in BiVO₄ and its enhanced photocatalytic

activity under visible LED light irradiation

Trinh Duy Nguyen,^{*a} Quynh Thi Phuong Bui,^b Tien Bao Le,^b T. M. Altahtamouni,^c Khanh

Bao Vu,^d Dai-Viet N. Vo,^a Nhan Thi Hong Le,^e Tuan Duy Luu,^e Seong Soo Hong,^f and

Kwon Taek Lim^g

^a Center of Excellence for Green Energy and Environmental Nanomaterials (CE@GrEEN), Nguyen Tat Thanh University, Ho Chi Minh City, Vietnam.

^b Faculty of Chemical Technology, Ho Chi Minh City University of Food Industry, 140 Le Trong Tan, Tan Phu District, Ho Chi Minh City, Vietnam

^c Materials Science and Technology Program, College of Arts and Sciences, Qatar University Doha 2713, Qatar

^d NTT Hi-Tech Institute, Nguyen Tat Thanh University, Ho Chi Minh City, Vietnam

^e Department of Chemical Engineering, HCMC University of Technology, VNU-HCM, Ho Chi Minh City, Vietnam

^f Department of Chemical Engineering, Pukyong National University, Busan, Korea

^g Department of Display Engineering, Pukyong National University, Busan, Korea

*Corresponding authors: T.D. Nguyen, Fax: (+84)-028-39-404-759; Tel: (+84)-028-3941-1211; E-mail: ndtrinh@ntt.edu.vn

Fig. S1. XRD patterns of the pristine BiVO4 and Co-doped BiVO₄ samples.

Fig. S2. Raman spectra of the pristine BiVO₄ and Co-doped BiVO₄ samples.

Fig. S3(A). SEM images of the 0.05Co-BVO sample.

Fig. S3(B). SEM images of the 0.1Co-BVO sample.

Fig. S3(C). SEM images of the 0.3Co-BVO sample.

Fig. S3(D). SEM images of the 0.5Co-BVO sample.

Fig. S4. TEM images of the 0.2Co-BVO sample.

Fig. S5. Photo-stability tests over 0.2Co- BiVO₄ for the cycling photodegradation of MB.

Fig. S6. XRD patterns of 0.2Co-BVO catalyst before/after five runs

Fig. S7. Trapping experiments of photocatalytic degradation of MB over $BiVO_4$ with the presence of scavengers: TBA (a), AO (b), BQ (c) and $K_2Cr_2O_7$ (d), and without the presence of scavenger (e).

No.	Catalyst	MB volume	Light source	ta	Hb	k_{app}^{c}	Reff.
		and				* *	
		concentration					
1	CeO ₂ /BiVO ₄ composite	~50 µM	Simulated solar	6h	-	~1.2	[1]
			illumination			(h^{-1})	
			$(100 \text{ mW cm}^{-2}).$				
2	TiO ₂ /BiVO ₄ composite	~50 µM	Simulated solar	6h	-	~1.1	[1]
			illumination			(h^{-1})	
			$(100 \text{ mW cm}^{-2}).$				
3	WO ₃ /BiVO ₄ composite	~50 µM	Simulated solar	6h	-	~0.8	[1]
			illumination			(h^{-1})	
			$(100 \text{ mW cm}^{-2}).$				
4	Monoclinic BiVO ₄	100 mL, 20	A300 W	3h	96%	-	[2]
	powders	mgL^{-1}	tungsten				
			halogen lamp				
			and a 420- nm				
			cutoff filter				
5	Monoclinic BiVO ₄	50 ml, 10 ⁻⁵	Simulated	240	62%	-	[3]
		М	visible light	min			
6	Composite-phase	250 mL, 10	A 500-W Xe	120	95%	-	[4]
	BiVO ₄ (scheelite-	mgL^{-1}	lamp with a	min			
	tetragonal and		420 nm cutoff				
	scheelite-monoclinic)		filte				
7	Cobalt-doped BiVO ₄	100 mL, 10	A 150-W Xe	5 h	85%	-	[5]
	(Co-BiVO ₄)	mgL^{-1}	lamp with a				
			420 nm cutoff				
			filter				
8	Yb^{+3} , Er^{+3} , and Tm^{+3}	70 mL, 20	A 100 W	480	74.4 %	0.00276	[6]
	doped BiVO ₄ (with	ppm	infrared lamp	min		min ⁻¹	
	6:3:3 mole percentage		(NIR light				
	of Yb ⁺³ : Er ⁺³ : Tm ⁺³)		source)				
9	Yb^{+3} , Er^{+3} , and Tm^{+3}	70 mL, 20	UV cut off	180	92.98%	0.013	[6]
	doped BiVO ₄ (with	ppm	solar light	min		min ⁻¹	
	6:3:3 mole percentage		simulator				
	of Yb ⁺³ : Er ⁺³ : Tm ⁺³)		(visible light				
			source)				
10	Yttrium-doped BiVO ₄	250 mL, 10	A Hg-Xe lamp	120	100%	4. 10 ⁻⁴	[7]
	(3% at)	ppm	of 200 W	min		s ⁻¹	
11	Yb ³⁺ , Er ³⁺ -codoped	150 mL, 10	An Hg–Xe	120	100%	12.10-4	[8]
	BiVO ₄ with an Er^{3+} to	ppm	lamp of 250 W	min		S ⁻¹	
	Yb^{3+} ratio of 1:4.						
12	Er-doped BiVO ₄ (3	50 mL, 10	a 150 W Xe	120	100%	6.10 ⁻⁴	[9]
	at%)	mg L ⁻¹	lamp	min		S ⁻¹	
13	Tb^{3+} doped BiVO ₄ (2	300 mL	A 500 W xenon	120	99.9%		[10]

Table S1. A comparison of photocatalytic activity of photocatalysts.

	at%)	ofMB (10	lamp	min							
		mg/L									
14	PPy/Bi ₂ WO ₆ (PPy 0.5	$100 \text{ mL}, 10^{-5}$	A 500 W Xe	30	100%		[11]				
	wt%) composites	mol/L	lamp with a UV	min							
	(shown		cut-off filter								
		ļ	(420 nm)		ļ	L					
15	Poly-o-	30 ml,	A 1000 W	180	-	0.0033	[12]				
	phenylenediamine	40 mg/L	xenon lamp	min		min ⁻¹					
	modified										
	TiO ₂ nanocomposites										
16	$SiO_2@\alpha$ -	100 mL, 5		100	96%	-	[13]				
	Fe ₂ O ₃ Nanocomposites	ppm	A 410 nm LED	min							
	Deposited on		light								
	SnS ₂ Flowers										
			<u> </u>								
17	Monoclinic BiVO ₄	100 mL, 15	Six LED lamps	180	72%	0.633	This				
		$mg.L^{-1}$	(XLamp XT-E	mın		(10-	study				
			White, Cree			$^{3}.min^{-1})$					
			X6) with the								
			max power of								
			10 W and max								
			light output of								
			1040 lm								
18	0.2Co-BVO	100 mL, 15	Six LED lamps	180	98%	1.882	This				
		$mg.L^{-1}$	(XLamp XT-E	mın		(10-	study				
			White, Cree			$^{3}.min^{-1})$					
			X6) with the								
			max power of								
			10 W and max								
			light output of								
<u> </u>			1040 lm								
aTim	^a Time of irradiation										
^b The	degradation rate										
^c Apparent first-order rate constants of MB degradation											

Reference

- K. Pingmuang, J. Chen, W. Kangwansupamonkon, G.G. Wallace, S. Phanichphant, A. Nattestad, Composite Photocatalysts Containing BiVO4 for Degradation of Cationic Dyes, Sci. Rep. 7 (2017) 8929. doi:10.1038/s41598-017-09514-5.
- [2] X. Zhang, Z. Ai, F. Jia, L. Zhang, X. Fan, Z. Zou, Selective synthesis and visible-light photocatalytic activities of BiVO4 with different crystalline phases, Mater. Chem. Phys. (2007). doi:10.1016/j.matchemphys.2007.02.008.

- [3] S. Nikam, S. Joshi, Irreversible phase transition in BiVO 4 nanostructures synthesized by a polyol method and enhancement in photo degradation of methylene blue, RSC Adv. 6 (2016) 107463– 107474. doi:10.1039/C6RA14700C.
- [4] L. Zhang, J. Long, W. Pan, S. Zhou, J. Zhu, Y. Zhao, X. Wang, G. Cao, Efficient removal of methylene blue over composite-phase BiVO 4 fabricated by hydrothermal control synthesis, Mater. Chem. Phys. 136 (2012) 897–902. doi:10.1016/j.matchemphys.2012.08.016.
- [5] B. Zhou, X. Zhao, H. Liu, J. Qu, C.P. Huang, Visible-light sensitive cobalt-doped BiVO4(Co-BiVO4) photocatalytic composites for the degradation of methylene blue dye in dilute aqueous solutions, Appl. Catal. B Environ. 99 (2010) 214–221. doi:10.1016/j.apcatb.2010.06.022.
- [6] C. Regmi, Y.K. Kshetri, S.K. Ray, R.P. Pandey, S.W. Lee, Utilization of visible to NIR light energy by Yb+3, Er+3 and Tm+3 doped BiVO4 for the photocatalytic degradation of methylene blue, Appl. Surf. Sci. 392 (2017) 61–70. doi:10.1016/j.apsusc.2016.09.024.
- [7] S. Usai, S. Obregón, A.I. Becerro, G. Colón, Monoclinic-tetragonal heterostructured BiVO4 by yttrium doping with improved photocatalytic activity, J. Phys. Chem. C. 117 (2013) 24479–24484. doi:10.1021/jp409170y.
- [8] S. Obregón, G. Colón, Excellent photocatalytic activity of Yb3+, Er3+ co-doped BiVO4 photocatalyst, Appl. Catal. B Environ. 152–153 (2014) 328–334. doi:10.1016/j.apcatb.2014.01.054.
- [9] S. Obregón, S.W. Lee, G. Colón, Exalted photocatalytic activity of tetragonal BiVO 4 by Er ³⁺ doping through a luminescence cooperative mechanism, Dalt. Trans. 43 (2014) 311–316. doi:10.1039/C3DT51923F.
- [10] Y. Wang, F. Liu, Y. Hua, C. Wang, X. Zhao, X. Liu, H. Li, Microwave synthesis and photocatalytic activity of Tb3+ doped BiVO4 microcrystals, J. Colloid Interface Sci. 483 (2016) 307–313. doi:10.1016/j.jcis.2016.08.048.
- [11] F. Duan, Q. Zhang, D. Shi, M. Chen, Enhanced visible light photocatalytic activity of Bi2WO6 via modification with polypyrrole, Appl. Surf. Sci. 268 (2013) 129–135. doi:10.1016/j.apsusc.2012.12.031.
- [12] C. Yang, W. Dong, G. Cui, Y. Zhao, X. Shi, X. Xia, B. Tang, W. Wang, Highly-efficient photocatalytic degradation of methylene blue by PoPD-modified TiO2 nanocomposites due to photosensitization-synergetic effect of TiO2 with PoPD, Sci. Rep. (2017). doi:10.1038/s41598-017-04398-x.
- [13] S. Balu, K. Uma, G.T. Pan, T.C.K. Yang, S.K. Ramaraj, Degradation of methylene blue dye in the presence of visible light using SiO2@α-Fe2O3 nanocomposites deposited on SnS2 flowers, Materials (Basel). (2018). doi:10.3390/ma11061030.