Electronic Supplementary Information

Design and fabrication of polypyrrole/expanded graphite 3D interlayers nanohybrids towards highly capacitive performance

Jue Wang,^{ab} Dong Fu,^a Binqiao Ren,^a Ping Yu,^a Xiaochen Zhang,^a Weijun Zhang^a and Kan Kan^{*ab}

^a Heilongjiang Academy of Sciences Institute of Advanced Technology, Harbin 150020, China.

^b Key Laboratory of Functional Inorganic Material Chemistry Ministry of Education of the People's Republic of China, Heilongjiang

University, Harbin 150080, China.

E-mail: kankan.has@foxmail.com

Fig. S1 The SEM images of (a) EG and (b) PPy

Fig. S2 N₂ adsorption-desorption isotherms of EG, PPy, PPy/EG15, PPy/EG10 and PPy/EG5 samples

Table S1	The specific surface are	a of EG, PPy	, PPy/EG15,	PPy/EG10 and PP	y/EG5 sam	ples
----------	--------------------------	--------------	-------------	-----------------	-----------	------

Sample	$S_{\rm BET}({ m m}^2~{ m g}^{-1})$		
РРу	15.8		
PPy/EG5	22.5		
PPy/EG10	28.7		
PPy/EG15	30.9		
EG	26.3		

Fig. S3 XPS full-scan spectra of PPy and PPy/EG10 samples

 Table S2
 Elemental composition of the EG, PPy and PPy/EG10 samples

Sample	C1s(at.%)	O1s(at.%)	N1s(at.%)
РРу	71.89	12.49	15.62
EG	97.26	2.48	0.27
PPy/EG10	76.90	11.18	11.92

Table S3 The calculated values of R_s , R_{ct} , Z_w , C_{dl} and C_{ps} through CNLS fitting of the experimental impedancespectra based on the proposed equivalent circuit displayed in Fig. 6a

Samples	$R_{\rm s}$ (Ω cm ⁻²)	$R_{\rm ct}$ (Ω cm ⁻²)	$Z_{ m w}$ (Ω cm ⁻²)	$C_{ m dl}$ (µF cm ⁻²)	$C_{\rm ps}$ (mF cm ⁻²)
EG	0.5516	0.071	0.1215	145.5	0.7768
PPy/EG5	0.5365	1.908	0.0614	20.94	1543
PPy/EG10	0.3699	1.839	0.1249	35.18	2839
PPy/EG15	0.8563	1.464	0.1904	23.04	1680
PPy	0.8665	2.944	0.1177	34.64	3254

spectra based on the proposed equivalent circuit displayed in Fig. 7a $R_{\rm s}$ $Z_{\rm w}$ C_{dl} $C_{\rm ps}$ $R_{\rm ct}$ Samples (Ω cm⁻²) (Ω cm⁻²) (µF cm⁻²) $(\Omega \text{ cm}^{-2})$ (mF cm⁻²) EG 1.201 0.257 0.2211 478.7 43.7 PPy/EG5 1.058 2.847 0.2526 22.23 1532 PPy/EG10 1.008 1.926 0.2461 30.84 2353 PPy/EG15 1.251 1.653 0.1883 25.49 1230 PPy 1.047 2.352 0.1373 19.64 3441

Table S4 The calculated values of R_s, R_{ct}, Z_w, C_{dl} and C_{ps} through CNLS fitting of the experimental impedance

Fig. S4. The CV curves of PPy/EG10 electrode at the scan rate from 10^{-100} mV s⁻¹ in (a) 1 M H₂SO₄ and (b) 1 M KCl electrolytes

	1 M H ₂ SO ₄ electrolyte			1 M KCl electrolyte			
Sample	С _g (F g ⁻¹)	Rate Capability (%)	Capacitance Retention (%)	$C_{\rm g}$ (F g ⁻¹)	Rate Capability (%)	Capacitance Retention (%)	
PPy	293.6	33.8%	67.6%	266.9	33.4%	69.4%	
PPy/EG5	376.4	54.7%		353.6	55.1%		
PPy/EG10	454.3	75.9%	83.9%	442.7	73.3%	86.3%	
PPy/EG15	402.5	78.4%		399.8	76.2%		
EG	49.6	52.7%	95.9%	42.2	51.3%	96.8%	

Table S5 The electrochemical properties of EG, PPy, PPy/EG15, PPy/EG10 and PPy/EG5 samples

Material	Electrolyte	Current density (A g ⁻¹)	Specific capacitance (F g ⁻¹)	Ref.
Graphene/PPy nanotube aerogel	$1 \text{ M H}_2 \text{SO}_4$	0.5	253	[13]
PPy/sulfonated graphene	$1 \text{ M H}_2 \text{SO}_4$	0.3	310	[14]
Cellulose carbon aerogel/PPy	$1 \text{ M} \text{H}_2 \text{SO}_4$	0.5	387.6	[57]
PPy/modified GO	2 M NaNO ₃	1.0	202	[15]
Activated Carbons/PPy	1M Na ₂ SO ₄	1.0	82.3	[24]
rGO/PPy aerogel	6 M KOH	0.5	304	[36]
	$1 \text{ M H}_2\text{SO}_4$	1.0	454.3	
Pry/EG	1 M KCl	1.0	442.7	I nis work

Table S6 Specific capacitance of different carbon based PPy nanohybrids in three-electrode system

Table S7 Specific capacitance, power density and energy density of different carbon based PPy nanohybrids in two symmetric electrode system

Material	Electrolyte	Current density (A g ⁻¹)	Specific capacitance (F g ⁻¹)	Power density (kW kg ⁻¹)	Energy density (Wh kg ⁻¹)	Ref.
	1M KCl	0.3		0.1089	4.3	[14]
PPy/sulfonated graphene			253	3.6	2.8	
PPy/modified GO	2 M NaNO ₃	1.0	87	0.825	10	[15]
Graphene oxide/carbon dots/PPy	1M LiCl	0.5	216.8	0.25	30.1	[29]
	1 M Et ₄ NBF ₄ -PC	1.0	342.4	1.0	47.5	This
PPy/EG				20	23.9	work