Supporting Information

 Table S1 Thermal parameters of PDLA-PCVL-PDLA triblock copolymers and the

 corresponding supramolecular polymers derived from DSC scans

Table S2 Thermal parameters of PLLA/supramolecular polymer blends derived from

DSC scans

Fig. S1 XRD patterns of PLLA/SMP blends: (a) PLLA/SMP0.49; (b) PLLA/SMP1.04

Fig. S2 Variation of storage modulus (G') and loss modulus (G'') as function of frequency for the

neat PLLA melted at 175°C

Fig. S3 Variation of loss tangent (tanδ) as function of frequency for the neat PLLA melted at 175°C

Fig. S4 Variation of complex viscosity (η^*) as function of frequency for the neat PLLA melted at 175°C

		Coc	oling			Re-heating									
Sample	<i>T_c, _{PCVL}</i> (°С)	ΔH_c , PCVL (J/g)	<i>Т_{с,PDL}</i> А (°С)	ΔH_c , pdla (J/g)	Т _g (°С)	<i>T_{cold,PCV}</i> <i>L</i> (°С)	ΔH _{cold} , PCVL (J/g)	<i>T_m, _{PCVL}</i> (°С)	ΔH_m , PCVL (J/g)	<i>Т_{m,PDLA}</i> (°С)	ΔH_m , PDLA (J/g)				
PDLA-PCVL-PDLA0.49	3.8/11. 6	47.3						30.2/35.4	46.7						
PDLA-PCVL-PDLA1.04	7.9	30.1	72.4	8.9				29.2/34.7	30.0	108.9/127.9	8.7				
SMP0.49	-16.3	11.6			-54.1	-12.9	24.6	28.9	38.5						
SMP1.04					-45.6					117.3	3.3				

Table S1 Thermal parameters of PDLA-PCVL-PDLA triblock copolymers and the corresponding supramolecular polymers derived from DSC scans

Notes: $T_{c,PCVL}$ and $T_{c,PDLA}$ denote the crystallization temperatures of PCVL and PDLA blocks in the cooling run, respectively; $\Delta H_{c,PCVL}$ and $\Delta H_{c,PDLA}$ represent the crystallization enthalpy of PCVL

and PDLA block in the cooling run; T_g represents the glass transition temperature; $T_{cold, PCVL}$ and $\Delta H_{cold, PCVL}$ are cold crystallization temperature and cold crystallization enthalpy of PCVL block in

heating run, respectively; $T_{m,PCVL}$ and $T_{m,PDLA}$ are melting temperatures of PCVL and PDLA blocks, respectively; $\Delta H_{m,PCVL}$ and $\Delta H_{m,PDLA}$ are the melting enthalpy of PCVL and PDLA blocks in the

heating run.

Sample	Cooling				Re-heating									XcPULA
	Т _{с,hc} (°С)	∠ <i>H_{c,h}</i> c (J/g)	Т _{с, sc} (°С)	ΔH _{c,s} c (J/g)	<i>Т_{т,РСVL}</i> (°С)	$\Delta H_{m,PCV}$ L (J/g)	Т _g (°С)	T _{cold,hc} (℃)	ΔH _{cold,h} c (J/g)	Т _{т,hc} (°С)	$\Delta H_{m,h}$ c (J/g)	<i>Т_{т,sc}</i> (°С)	$\Delta H_{m,sc}$ (J/g)	(%)
PLLA	99.4	7.4					60.0	112.2	24.5	161.6/166.9	35.6			11.9
PLLA/SMP0.49-10%	99.3	0.5			30.5	3.2	59.8	113.3	29.3	162.5/169.1	29.6			0.4
PLLA/SMP0.49-30%					29.9	5.3	58.9	112.9	21.3	161.0/167.9	21.3	181.2	0.4	0
PLLA/SMP0.49-50%					29.8	11.3	58.6	114.5	16.3	161.7/168.7	16.0	183.0	0.7	0
PLLA/SMP1.04-10%	96.5	2.4	137.6	1.1			58.7	112.2	18.9	161.0/166.9	23.8	182.0	0.3	5.8
PLLA/SMP1.04-30%	98.6	8.5	141.0	1.8	27.9	0.8	58.7	109.8	9.6	160.2/166.0	22.6	182.3	1.3	19.8
PLLA/SMP1.04-50%	110.1	12.9	142.8	4.8	26.5/33.2	9.0				156.0/164.3	13.7	183.3	3.8	29.2

Table S2 Thermal parameters of PLLA/supramolecular polymer blends derived from DSC scans

Notes: $T_{c,hc}$ and $T_{c,sc}$ denote the crystallization temperatures of homo-crystallization and stereocomplex crystallization in the cooling run, respectively; $\Delta H_{c,hc}$ and $\Delta H_{c,sc}$ represent the crystallization enthalpy of homo-crystallization and stereocomplex crystallization in the cooling run, respectively; $T_{m,PCVL}$ and $\Delta H_{m,PCVL}$ are melting temperature and melting enthalpy of PCVL block, respectively; T_g represents the glass transition temperature; $T_{cold,hc}$ and $\Delta H_{cold,hc}$ are cold crystallization temperature and cold crystallization enthalpy of homo-crystallization in heating run, respectively; $T_{m,hc}$ and

 $T_{m,sc}$ are melting temperatures of homo-crystallized PLLA and stereocomplex in the heating run, respectively; $\Delta H_{m,hc}$ and $\Delta H_{m,sc}$ are the melting enthalpy of homo-crystallized PLLA and stereocomplex; respectively; $X_{c,PLLA}(\%) = (\Delta H_{m,hc} - \Delta H_{cold,hc})/([1-P] \times \Delta H_{m,PLLA}^0)$, $\Delta H_{m,PLLA}^0 = 93.6$ J/g,P denotes the mass fraction of supramolecular polymer in the blends.

Fig. S1 XRD patterns of PLLA/SMPs blends: (a) PLLA/SMPs0.49; (b) PLLA/SMPs1.04

Fig. S2 Variation of storage modulus (G') and loss modulus (G'') as function of frequency for the neat

PLLA melted at 175°C

Fig. S3 Variation of loss tangent (tan δ) as function of frequency for the neat PLLA melted at 175°C

Fig. S4 Variation of complex viscosity (η^*) as function of frequency for the neat PLLA melted at 175°C