Supporting Information (SI)

Calcined chicken eggshell electrode for battery and supercapacitor applications

¹Manickam Minakshi^{*}, ¹Stephen Higley, ²Christian Baur, ³David R.G. Mitchell, ⁴Robert T. Jones, and ²Maximilian Fichtner

¹Engineering and Energy, Murdoch University, WA 6150, Australia ²Helmholtz Institute Ulm for Electrochemical Energy Storage (HIU), 89081 Ulm, Germany ³Electron Microscopy Centre, University of Wollongong, NSW 2500, Australia ⁴Centre for Materials and Surface Science, La Trobe University, VIC 3086, Australia

This supporting information (SI) comprises one table and four figures

Table S1 XPS elemental fractions and chemical states of chicken eggshell powder

Eggshell	Chemical state / Atom Fractions (%) / Relative Concentrations (%)											
powder	Wide (survey) spectrum					C (1s)				O (1s)		
samples	O 1s	Ca 2p	C 1s	N	Mg	C—C	CO ₃	C-0	C=O/	CaCO ₃ /	Inorganic	Organic
				1 s	1s				0-C-0	CaO	0	0
As-	45.3	12	40.5	2.2		38.4	38.6	13.7		82.1	14.2	3.7
crushed									6.8			
Calcined	51	13.7	32.8	0.2	0.5	42.4	47.0	8.9		79.1	16.5	4.4
at 600 °C									1.8			
Calcined	50.1	15.4	33.8	0	0.7	49.8	38.7	8.6	2.9	86.0	11.0	3.0
at 900 ºC												

Figure S1 Thermo-gravimetric (blue curve) (TGA) of the chicken eggshell powder showing a stability until 700° C and from thereon a significant weight loss is observed indicating a phase change from CaCO₃ to CaO. For clarity, magnified plot is provided (right).

Figure S2 Elemental dispersive analysis (EDS) of chicken eggshell (a) as-crushed; and calcined at: (b) 600 and (c) 900 °C. EDS analysis showing the elemental composition of Ca, and O. The as-crushed eggshell also show Mg and C as other minor components.

Figure S3 Wide scan XPS spectra of chicken eggshell as-crushed powder showing the elements present in the shell.

Figure S4 CV curves of chicken eggshell (three-electrode configuration) in (a) positive potential window green (0.5 V); (b) negative potential window black (-1.0 V); and (d) full region comprising both positive and negative red (1.5 V) in NaOH aqueous electrolyte. The CV in the negative and full region show redox behaviour with reduction (C1, C2) and oxidation (A1, A2) peaks.