Improving optoelectronic and charge transport properties of $D-\pi-$ D type diketopyrrolopyrrole-pyrene derivatives as multifunctional materials for organic solar cells applications

Ruifa Jin a ${ }^{\text {ab* }}$ Kexin Li ${ }^{\text {a }}$, Xueli Han ${ }^{\text {a }}$
${ }^{a}$ College of Chemistry and Chemical Engineering, Chifeng University, Chifeng 024000, China
${ }^{b}$ Inner Mongolia Key Laboratory of Photoelectric Functional Materials, Chifeng
024000, P. R. China

Table of Contents

Table S1 Calculated the longest absorption wavelengths λ_{abs} of parent molecule $\mathbf{1}$ by various methods with $6-31 \mathrm{G}(\mathrm{d}, \mathrm{p})$ basis set, along with available experimental data.
Table S2 The Calculated $E_{\text {номо }}$ and $E_{\text {LUмо }}$ (in eV) for $\mathrm{PC}_{61} \mathrm{BM}$ and $\mathrm{PC}_{71} \mathrm{BM}$ at PBE0/6-31G (d,p) and B3LYP/6-31G (d,p) levels, along with available experimental data.

Table S3 The differences between the $E_{\text {Номо }}$ of $\mathbf{1 - 8}$ and the $E_{\text {LUмо }}$ of $\mathrm{PC}_{61} \mathrm{BM}$ and $\mathrm{PC}_{71} \mathrm{BM}\left(\Delta E_{\mathrm{L}-\mathrm{H}}\right)$ at the $\mathrm{PBE} 0 / 6-31 \mathrm{G}(\mathrm{d}, \mathrm{p})$ level.

Table S1 Calculated the longest absorption wavelengths $\lambda_{\text {abs }}$ of parent molecule $\mathbf{1}$ in chloroform by various methods with 6$31 \mathrm{G}(\mathrm{d}, \mathrm{p})$ basis set, along with available experimental data.

Methods	$\lambda_{\text {abs }}$
B3LYP/6-31G(d,p)	615
PBE0/6-31G(d,p)	583
CAM-B3LYP/6-31G(d,p)	503
LC- ω PBE/6-31G(d,p)	452
$\omega B 97 X D / 6-31 G(d, p)$	493
$M 062 X / 6-31 G(d, p)$	507
$\operatorname{Exp}^{[a]}$	589

[^0]Table S2 The Calculated $E_{\text {Номо }}$ and $E_{\text {LUмо }}$ (in eV) for $\mathrm{PC}_{61} \mathrm{BM}$ and $\mathrm{PC}_{71} \mathrm{BM}$ at PBE0/6-31G (d,p) and B3LYP/6-31G (d,p) levels, along with available experimental data.

Methods	$\mathrm{PC}_{61} \mathrm{BM}$			$\mathrm{PC}_{71} \mathrm{BM}$	
	$E_{\text {Номо }}$	$E_{\text {LUMO }}$		$E_{\text {Номо }}$	$E_{\text {LUмо }}$
PBE0/6-31G (d,p)	-5.98	-3.99		-5.92	-3.82
B3LYP/6-31G (d,p)	-5.67	-3.75		-5.61	-3.60
EXP $^{[\text {a] }}$	-6.00	-3.80		-6.00	-3.95

${ }^{[a]}$ Experimental results of $\mathrm{PC}_{61} \mathrm{BM}$ and $\mathrm{PC}_{71} \mathrm{BM}$ were taken from Refs [52] and[53], respectively.

Table S3 The differences between the $E_{\text {Номо }}$ of $\mathbf{1 - 8}$ and the $E_{\text {LUMO }}$ of $\mathrm{PC}_{61} \mathrm{BM}$ and $\mathrm{PC}_{71} \mathrm{BM}\left(\Delta E_{\mathrm{L}-\mathrm{H}}\right)$ at the $\operatorname{PBE} 0 / 6-31 \mathrm{G}(\mathrm{d}, \mathrm{p})$ level.

Molecules	$\Delta E_{\mathrm{L}-\mathrm{H}^{[\mathrm{a}]}}$	$\Delta E_{\mathrm{L}-\mathrm{H}}{ }^{[\mathrm{b}]}$
$\mathbf{1}$	1.12	1.29
$\mathbf{2}$	1.34	1.51
$\mathbf{3}$	1.07	1.24
$\mathbf{4}$	1.19	1.36
$\mathbf{5}$	1.24	1.41
$\mathbf{6}$	1.28	1.45
$\mathbf{7}$	1.20	1.37
$\mathbf{8}$	1.40	1.57

[^1]
[^0]: ${ }^{\text {[a] }}$ Experimental results of 1 were taken from Ref. [39].

[^1]: ${ }^{[a]} \Delta E_{\mathrm{L}-\mathrm{H}}$ values for $\mathrm{PC}_{61} \mathrm{BM}$ as acceptor; ${ }^{[b]} \Delta E_{\mathrm{L}-\mathrm{H}}$ values for $\mathrm{PC}_{71} \mathrm{BM}$ as acceptor.

