Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2019

Improving optoelectronic and charge transport properties of $D\!-\!\pi\!-\!D$ type diketopyrrole-pyrene derivatives as multifunctional materials for organic solar cells applications

Ruifa Jin a,b* Kexin Li a, Xueli Han a

^a College of Chemistry and Chemical Engineering, Chifeng University, Chifeng 024000, China

^b Inner Mongolia Key Laboratory of Photoelectric Functional Materials, Chifeng 024000, P. R. China

Table of Contents

Table S1 Calculated the longest absorption wavelengths λ_{abs} of parent molecule **1** by various methods with 6-31G(d,p) basis set, along with available experimental data.

Table S2 The Calculated E_{HOMO} and E_{LUMO} (in eV) for PC₆₁BM and PC₇₁BM at PBE0/6-31G (d,p) and B3LYP/6-31G (d,p) levels, along with available experimental data.

Table S3 The differences between the E_{HOMO} of **1–8** and the E_{LUMO} of PC₆₁BM and PC₇₁BM ($\Delta E_{\text{L-H}}$) at the PBE0/6-31G(d,p) level.

Table S1 Calculated the longest absorption wavelengths λ_{abs} of parent molecule 1 in chloroform by various methods with 6-31G(d,p) basis set, along with available experimental data.

Methods	λ_{abs}
B3LYP/6-31G(d,p)	615
PBE0/6-31G(d,p)	583
CAM-B3LYP/6-31G(d,p)	503
$LC-\omega PBE/6-31G(d,p)$	452
ωB97XD /6-31G(d,p)	493
M062X/6-31G(d,p)	507
$\mathrm{Exp}^{[\mathtt{a}]}$	589

[[]a] Experimental results of 1 were taken from Ref. [39].

Table S2 The Calculated $E_{\rm HOMO}$ and $E_{\rm LUMO}$ (in eV) for PC₆₁BM and PC₇₁BM at PBE0/6-31G (d,p) and B3LYP/6-31G (d,p) levels, along with available experimental data.

Methods	$PC_{61}BM$		$PC_{71}BM$	
	$E_{ m HOMO}$	$E_{ m LUMO}$	$E_{ m HOMO}$	$E_{ m LUMO}$
PBE0/6-31G (d,p)	-5.98	-3.99	-5.92	-3.82
B3LYP/6-31G (d,p)	-5.67	-3.75	-5.61	-3.60
$EXP^{[a]}$	-6.00	-3.80	-6.00	-3.95

 $^{^{[}a]}$ Experimental results of $PC_{61}BM$ and $PC_{71}BM$ were taken from Refs [52] and[53], respectively.

Table S3 The differences between the E_{HOMO} of **1–8** and the E_{LUMO} of PC₆₁BM and PC₇₁BM ($\Delta E_{\text{L-H}}$) at the PBE0/6-31G(d,p) level.

Molecules	$\Delta E_{ ext{L-H}}{}^{ ext{[a]}}$	$\Delta E_{ ext{L-H}}^{ ext{[b]}}$	
1	1.12	1.29	
2	1.34	1.51	
3	1.07	1.24	
4	1.19	1.36	
5	1.24	1.41	
6	1.28	1.45	
7	1.20	1.37	
8	1.40	1.57	

 $^{^{[}a]}$ $\Delta E_{\text{L-H}}$ values for PC₆₁BM as acceptor; $^{[b]}$ $\Delta E_{\text{L-H}}$ values for PC₇₁BM as acceptor.