

Fig. S1. (a) Low- and (b) high-magnification HRTEM images of prepared FeP/C catalysts.

Fig. S2. (a) HRTEM and (b) SEM images of prepared FeP/C samples. The yellow box indicates the layered-like structure of FeP/C.

Fig. S3. (a) HAADF-STEM and corresponding (b–d) HAADF-STEM-EDS elemental mapping images of C, Fe, and P.

Fig. S4. (a) CV curves of P/C at various scan rates; (b) GCD curves of P/C at different current densities.

Fig. S5. Areal capacitances at different current densities of (a) P/C and (b) FeP/C samples.

Fig. S6. Cyclic voltammetry curve for P/C and FeP/C recorded in O_2 -saturared 0.1 M KOH at a scan rate of 100 mV s⁻¹.

Fig. S7. Comparison of the onset, half-wave potentials, and limiting current densities of P/C, FeP/C, and 20 wt% Pt/C.

Fig. S8. Chronoamperometric measurements of FeP/C and commercial 20 wt% Pt/C for 9000 s at a constant potential of 0.46 V *vs.* RHE.

Sample	Pore size (nm)	Specific surface area (m ² g ⁻¹)	Total pore volume (cm ³ g ⁻¹)
P/C	1.79	596	0.69
FeP/C	0.67	1269	1.44

Table S1. The specific surface area, pore width, and total pore volume of P/C and FeP/C.

Table S2. Comparison data for the electrochemical performance of FeP/C with previously reported Febased materials.

Electrode material	Areal capacitance (mF cm ⁻²)	Current density (mA cm ⁻²)	Electrolyte	Electrode stability	Ref.
FeP/C	313	1.2	3 М КОН	95% at 10,000 cycles 100 mV s ⁻¹	This work
FeP nanotube arrays	300.1	1	1 M LiCl	41% at 5000 cycles 5 mA cm ⁻²	[1]
Fe ₂ P ₄ O ₁₂ – carbon composite	251	1	0.5 M H ₂ SO ₄	Initial 10% loss after 500 cycles 5 mA cm ⁻²	[2]
Fe ₂ O ₃ nanotubes	180.4	1	5 M LiCl	84% at 5000 cycles 2 mA cm ⁻² (in asymmetric supercapacitor)	[3]
C@Fe ₃ O ₄ yarn	127	1	1 M LiCl	80% at 800 cycles (in solid-state asymmetric supercapacitor)	[4]

References

- 1. B. Liang, Z. Zheng, M. Retana, K. Lu, T. Wood, Y. Ai, X. Zu and W. Zhou, *Nanotechnology*, 2019, **30**, 295401.
- 2. R. Soni and S. Kurungot, New J. Chem., 2019, 43, 399-406.
- P. Yang, Y. Ding, Z. Lin, Z. Chen, Y. Li, P. Qiang, M. Ebrahimi, W. Mai, C. P. Wong and Z. L. Wang, *Nano Lett.*, 2014, 14, 731-736.
- 4. J. Sun, Y. Huang, C. Fu, Y. Huang, M. Zhu, X. Tao, C. Zhi and H. Hu, *J. Mater. Chem. A*, 2016, **4**, 14877-14883.
- 5. T. Liu, Y. Ling, Y. Yang, L. Finn, E. Collazo, T. Zhai, Y. Tong and Y. Li, *Nano Energy*, 2015, **12**, 169-177.