Supplementary Materials

In situ formation of DNA-templated copper nanoparticles as fluorescent indicator for hydroxylamine detection

Quanwei Song^{a,b,*}, Changzhao Chen^{a,b}, Wenhe Yu^{a,b}, Lixia Yang^c, Kunfeng Zhang^{a,b}, Jin Zheng^{a,b}, Xianyuan Du, Hongkun Chen^{a,b}

^a State Key Laboratory of Petroleum Pollution Control, Beijing 102206, China
^b CNPC Research Institute of Safety and Environment Technology, Beijing 102206, China
^c Beijing Key Laboratory of Metal Material Characterization, Central Iron and Steel Research Institute, Beijing 100081, China
*Corresponding authors. Tel: +86-010-80169547
E-mail address: song_quanwei@163.com

DNA Sequences were used in this study:

Code	Sequence	Length
	(5'→3'/3'→5')	(bp)
AT16	ATATATATATATATAT /	16
	ΤΑΤΑΤΑΤΑΤΑΤΑΤΑΤΑ	
AT22	ΑΤΑΤΑΤΑΤΑΤΑΤΑΤΑΤΑΤΑΤΑΤΑΤΑΤΑΤΑΤΑΤΑΤΑΤΑΤ	22
	ΤΑΤΑΤΑΤΑΤΑΤΑΤΑΤΑΤΑΤΑΤΑΤΑ	
AT28	ΑΤΑΤΑΤΑΤΑΤΑΤΑΤΑΤΑΤΑΤΑΤΑΤΑΤΑΤΑΤΑΤΑΤΑΤΑΤ	28
	ΤΑ	
AT34	ΑΤΑΤΑΤΑΤΑΤΑΤΑΤΑΤΑΤΑΤΑΤΑΤΑΤΑΤΑΤΑΤΑΤΑΤΑΤ	34
	ΤΑ	
AT40	ΑΤ	40
	TATAT /	
	ΤΑ	
	АТАТА	

Preparation of dsDNA templates:

Firstly, both the oligonucleotide (1 μ M) and its complementary strand were mixed together at 1:1 molar ratio in the MOPS buffered solutions (10 mM MOPS, 2 mM MgCl₂, 150 mM NaCl, pH 7.5). Then, the mixture was annealed at 95 °C for 10 min, and then slowly cooled down to the room temperature (25 °C).

Preparation of fluorescent DNA-CuNPs:

Firstly, 500 μ L MOPS buffered solutions and final concentration of hydroxylamine hydrochloride (2 mM) was mixed in 2 mL EP tubes. Then, after the solution was incubated for 1 min, final concentration of CuSO₄ (100 μ M) was introduced. Finally, the synthesis of fluorescent DNA-CuNPs were completed within 10 min incubation time at room temperature.

Fig. S1. Fluorescence spectra of CuNPs templated by various AT-rich sequence templates: AT16, AT22, and AT28.

Fig. S2. Fluorescence decay curves of CuNPs templated by AT16, AT22, and AT28.

Fig. S3. Effect of the synthetic conditions at $\lambda_{em} = 588$ nm ($\lambda_{ex} = 340$ nm). A) The concentrations of Cu²⁺ ions were 0.015, 0.03, 0.05, 0.1, 0.2, 0.3, and 0.4 mM, respectively. B) The concentrations of hydroxylamine (HA) were 0.5, 1, 1.5, 2, 2.5, 3, and 4 mM, respectively. The error bars represent the standard deviation of three independent measurements.

Fig. S4. Time dependence of the fluorescence intensity of AT28-CuNPs ($\lambda_{ex} = 340$ nm, $\lambda_{em} = 588$ nm) in MOPS buffered solutions.

Fig. S5. The fluorescence intensity of CuNPs based on different templates length of ATrich DNA: AT16, AT22, AT28, AT34, and AT40 ($\lambda_{ex} = 340$ nm, $\lambda_{em} = 588$ nm) in MOPS buffered solutions.

Table S1. Detection of HA from the local tap water, the local ground water, and the local river water near the factory.

	Samples	Added	Detected	Recovery	RSD, n=9
		(mM)	(mM)	(%)	(%)
Тар	1	0.3	0.289	96.3	3.8
water	2	0.8	0.782	97.8	3.5
	3	1.2	1.124	93.7	4.4
Ground	1	0.3	0.278	92.7	3.7
water	2	0.8	0.771	96.4	4.6
	3	1.2	1.108	92.3	5.8
River	1	0.3	0.278	92.7	5.6
water	2	0.8	0.788	98.5	4.8

3 1.2	1.146	95.5	4.2
-------	-------	------	-----

Table S2. Comparison of the proposed method with other recent methods for HA detection.

	Method	Detection	Response Time	Reference
		limits		
1	HPLC	0.05 mM	More than 1 h	W. D. Korte, J. Chromatogr., 1992, 603, 145
2	Spectrophotometric determination by flow injection analysis	0.05 mM	More than 1 h	G. C. M. Bourke, G. Stedman, A. P. Wade, <i>Analytica Chimica Acta</i> , 1983, 163, 277-280
3	Fluorescent sensor: DNA-CuNPs	0.022 mM	10 min	This work
4	Kinetic spectrophotometric determination	0.58 μΜ	More than 1 h	A. Afkhami, T. Madrakian, A. Maleki , Anal. Sci., 2006, 22, 329.
5	Ion chromatographic determination	36 nM	More than 1 h	C. Xu, Modern Agrochemicals, 2017, 16, 36.
6	GC	14.4 nM	More than 1 h	Y. Seike, R. Fukumori, Y. Senga, H. Oka, K. Fujinaga, M. Okumura, Anal. Sci., 2004, 20, 139.