Supporting information for

Low temperature synthesis and characterization of single phase multi-

component fluorite oxide nanoparticle sols

Mariappan Anandkumar,^a Saswata Bhattacharya,^a and Atul Suresh Deshpande^{*a}

^aDepartment of Materials Science and Metallurgical Engineering,

Indian Institute of Technology Hyderabad, Kandi, Sangareddy - 502285, INDIA

*Corresponding author: email- atuldeshpande@iith.ac.in

Phone: +91-4023017044

Table S1. d spacing values of GLCHZ and GLYHZ calculated from SAED pattern as well as through XRDRietveld refinement of xrd pattern.

		d spacing			
Sample	Plane	(nm)			
	-	SAED pattern	Refinement		
	111	0.31	0.30		
GLCHZ-RT	200	0.28	0.26		
	220	0.19	0.18		
	311	0.16	0.16		
	111	0.31	0.30		
GLCHZ-500	200	0.27	0.26		
	220	0.19	0.18		
	311	0.16	0.16		
GLYHZ-RT	111	0.31	0.30		
	200	0.28	0.26		

	220	0.19	0.18
	311	0.16	0.16
	111	0.30	0.30
GLYHZ-500	200	0.26	0.26
	220	0.18	0.18
	311	0.15	0.16

Samula	Element (at %)							
Sample		Ce	Gd	Hf	La	Zr	Y	
GICHZ PT	SEM-EDS	23.2	16.3	18.2	23.7	18.5	-	
GLCHZ-KI	ICP-OES	24.3	16.98	19.24	22.04	17.44	-	
GLYHZ-RT	SEM-EDS	-	16.3	16.3	21.3	17.4	28.7	
	ICP-OES	-	17.97	18.21	22.01	17.46	24.35	

 Table S2. Chemical composition of GLCHZ-RT and GLYHZ-RT using SEM-EDS and ICP-OES spectroscopy

Fig. S1 Rietveld refinement plots of (a) GLCHZ-RT and (b) GLYHZ-RT nanoparticles.

Fig. S2 Rietveld refinement plots of (a) GLCHZ-500 and (b) GLYHZ-500 nanoparticles.

Fig. S3 FT-IR spectra of as-synthesized and calcined (a) GHCHZ (left) and (b) GLYHZ (right) nanoparticles (c) and (d) enlarged FT-IR spectrum of GLCHZ and GLYHZ respectively.

Table S3. Assignment of FTIR p	eaks with various vibrational	modes of as-synthesized a	nd calcined GLYHZ
and GLCHZ powders.			

Wavenumber (cm ⁻¹)	Mode	Reference	
2900-3750	Adsorbed water	1-3	
1640	H ₂ O bending	1	
1765, 1665, 1461,			
1337, 1042, 819, 742,	Nitrates	1, 4	
668			
2250 – 2400,	Adsorbed CO ₂	5	
1025 - 1063	Adsorbed carbonates	6, 7	
400 - 750	M-O stretching	1, 2	

Fig. S4 Rietveld refinement plots of (a) GLCHZ-750 and (b) GLCHZ-1000 nanoparticles.

Fig. S5 Williamson-Hall plot of GLCHZ-RT nanoparticles

Fig. S6 Williamson-Hall plots of (a) GLCHZ-500, (b) GLYHZ-500, (c) GLCHZ-750 and (d) GLCHZ-1000 nanoparticles.

Sample	Sizeª (nm)	microstrainª (%)	Lattice parameter (Å)	R _p (%)	R _{wp} (%)	χ^2	Goodness of Fit
GLYHZ-RT	-	-	5.343 ± 0.001	4.44	5.02	1.36	1.17
GLYHZ-500	5.5	2.98 ± 1.1	5.338 ± 0.002	3.48	4.15	1.62	1.27
GLCHZ-RT	2.5	0.2 ± 0.4	5.340 ± 0.002	9.39	9.66	1.59	1.26
GLCHZ-500	3.1	0.2 ± 0.2	5.346 ± 0.001	7.05	8.07	1.63	1.27
GLCHZ-750	4.3	0.9 ± 0.5	5.347 ± 0.001	7.45	8.34	1.51	1.23
GLCHZ-1000	8.7	0.6 ± 0.08	5.343 ± 0.004	7.22	7.37	1.19	1.09

Table S4. Summary of refined values for different compositions

^a values obtained from Williamson-Hall Plot.

References

- 1. J. Seo, J. W. Lee, J. Moon, W. Sigmund and U. Paik, ACS Applied Materials & Interfaces, 2014, 6, 7388-7394.
- 2. R. A. Rocha and E. N. S. Muccillo, *Materials Research Bulletin*, 2003, **38**, 1979-1986.
- 3. G. A. M. Hussein, N. Sheppard, M. I. Zaki and R. B. Fahim, *Journal of the Chemical Society, Faraday Transactions*, 1991, **87**, 2661-2668.
- 4. H. A. Al-Hosney and V. H. Grassian, *Physical Chemistry Chemical Physics*, 2005, **7**, 1266-1276.
- 5. J. Wang, V. F. Kispersky, W. Nicholas Delgass and F. H. Ribeiro, *Journal of Catalysis*, 2012, **289**, 171-178.
- 6. M. Daturi, C. Binet, J.-C. Lavalley, A. Galtayries and R. Sporken, *Physical Chemistry Chemical Physics*, 1999, **1**, 5717-5724.
- 7. M. Li, U. Tumuluri, Z. Wu and S. Dai, *ChemSusChem*, 2015, **8**, 3651-3660.